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Abstract

Video and computer games have become an important area of study in the field of ed-

ucation. Games have been designed to teach mathematics, physics, raise social awareness,

teach history and geography, and train soldiers in the military. Recent work has created

computer games for teaching computer programming and understanding basic algorithms.

We present an investigation where computer games are used to teach two fundamental

computer science concepts: boolean expressions and recursion. The games are intended to

teach the concepts and not how to implement them in a programming language.

For this investigation, two computer games were created. One is designed to teach

basic boolean expressions and operators and the other to teach fundamental concepts of

recursion. We describe the design and implementation of both games.

We evaluate the effectiveness of these games using before and after surveys. The sur-

veys were designed to ascertain basic understanding, attitudes and beliefs regarding the

concepts. The boolean game was evaluated with local high school students and students in

a college level introductory computer science course. The recursion game was evaluated

with students in a college level introductory computer science course.

We present the analysis of the collected survey information for both games. This anal-

ysis shows a significant positive change in student attitude towards recursion and modest

gains in student learning outcomes for both topics.
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Chapter 1

Introduction and Overview

1.1 Introduction

There is considerable interest in using and designing video games as educational tools.

This interest is nearly as old as video games themselves [119] and spans many different

academic fields and disciplines including mathematics, geography, history, physics, poli-

tics, and language [9, 14, 17, 26, 27, 30, 41].

The Serious Games movement advocates the creation of “Games with a purpose be-

yond play” [35]. These games include those designed for training, education, health,

and “advergames” (i.e. persuasive games with a political, social, or commercial purpose)

[110, 163]. Two important parts of this movement are Games for Change [12] and Games

for Health [13]. Games are being used to educate first-responders and by military organi-

zations to recruit and train soldiers [2, 19, 39]. Numerous games have been created which

draw attention to important social issues including world conflict, immigration, and world

1
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hunger [8, 15, 18, 31, 36]. Video games have been created to educate the public about

health issues and promote physical exercise [13].

Games are also being used to attract students to the study of computer science. This

attraction is accomplished by offering students the opportunity to design and create video

games [44, 45, 51, 61, 117, 161]. This curriculum has been introduced for several reasons:

as an attempt to reverse declining enrollments in Computer Science, to provide the num-

bers of programmers which will be required by the entertainment industry and society in

general, and because games are an emerging field of academic study. Recently, a number of

computer games have been created for teaching specific computer programming concepts

[49, 56, 64]. While this work is important, we believe that video games should be cre-

ated which teach Computer Science concepts independent of any particular programming

language. In this thesis we present results from investigating two video games: one for

teaching boolean operators and expressions and one for teaching the concept of recursion.

1.2 Importance of Topic

1.2.1 Games

There is no question that video games are popular. In 2009, over 44 million video game

consoles were purchased in the United States. This number includes only sales of the three

most popular systems: Nintendo Wii, Microsoft XBox 360, and the Sony Playstation 3.

Another 39 million hand-held game systems were also purchased during the same year. For

these gaming systems, more than 350 million game were purchased in the same year [37].

2
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We believe educational games should be designed and created in order to take advantage

of this popularity.

1.2.2 Computer Science and Programming

The United States Bureau of Labor Statistics recently reported that there are just over 1.3

million workers with the occupational title of “computer software engineer” or “computer

programmer”. The bureau estimates the number of jobs in these fields will grow 21% by

the year 2018 [4]. Games which teach programming and other Computer Science concepts

could be an important supplement to a traditional Computer Science curriculum. Such

games may also act as a recruiting tool and entice students to study Computer Science in

school.

In 2006, it was estimated that 12 million people do some sort of “programming” at

work. In the same year there were an estimated three million “professional programmers”

[126]. Non-professional programmers are often called end-user programmers. Most end-

user programmers have not received any formal computer science training and their main

occupation is not programming. They write or modify programs in support of their main

occupation. Since it is unlikely that these end-users will “go back to school” to study

computer science, games for teaching computer science concepts to end-users would be a

valuable learning tool.

1.2.3 Algorithm Visualization

Understanding data structures and algorithms is a critical part of an education in Computer

Science. To further this understanding, many tools for visualizing the behavior of data

3
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structures and algorithms have been created [20, 21, 139, 150, 153]. These tools allow the

student to watch the data structure change during the execution of its defined operations.

The student can usually control the execution by stepping backward and forward in exe-

cution time. Similarly, a student could watch an algorithm as it operates on a given set of

data (i.e. watch the Quicksort algorithm as it chooses the pivot element, partitions the data

to be sorted, and then recursively sorts each partition). An overview and history of these

techniques can be found in [139, 150, 153].

A meta-study of algorithm visualization approaches has shown that visualizations are

an effective teaching method especially if they require interaction and actively engage the

student [100]. The same study also revealed that engagement is more important to the

learning outcome than features provided by the visualization software or tool. Video games

could provide an effective method for achieving student engagement. The design of educa-

tional games for Computer Science should be informed by what is known about effective

algorithm visualization systems.

1.2.4 Boolean Expressions and Operations

Boolean expressions and operations are an integral part of conditional statements which are

in every programming language and query language. Conditional statements are typically

taught early in a first year programming course and understanding them is a critical part of

learning to become a computer programmer. It is no surprise that conditional statements

and boolean expressions are considered a fundamental topic of Computer Science [148]

and Discrete Mathematics [46].

4
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Unfortunately many beginning students have difficulty with this topic [86, 92, 96, 101,

129]. Part of this difficulty arises from the fact that there is often a mismatch between

the name of a particular boolean operation and how that same word is used in everyday

language. For example, “or” is often used to denote a mutually exclusive “choice” in

everyday language (consider the question: Would you like tea or coffee? Most people

will choose one or the other). In programming languages, “or”, is not mutually exclusive

(exclusive choice is typically represented by another operator called “exclusive or”). The

operation named “and” is also confusing for similar reasons.

One goal of this thesis work is to aid students and non-professional programmers to

more clearly understand these concepts. We propose and then study a specific video game

designed to help achieve this goal.

1.2.5 Recursion

Recursion is an important topic in Computer Science and is considered one of the most dif-

ficult concepts to learn and teach [46, 114, 148]. Understanding recursion is critical for us-

ing some programming languages (e.g. LISP, Scheme, and the other functional languages).

It is perhaps not as commonly used in other languages except for certain algorithms or

situations. Recursion is often the method of choice when programming (or teaching) tree

traversal algorithms for example.

There is a considerable body of research literature devoted to new methods of teach-

ing this topic. Much of this literature describes new visualizations of the execution of

a recursive function or new metaphors to help students understand how recursion works

5
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[52, 53, 63, 71, 72, 89, 90, 95, 107, 154, 158, 47]. Some work has investigated the mental

representations used by novices to understand recursion [85, 113, 147, 162].

A second goal of this thesis work is to create a video game which acts as a visualization

of recursion. We propose a newly designed game and then examine its effectiveness as a

teaching tool.

1.3 State of the Educational Game Field

When considering education and video games, there are two general areas of research. The

first is understanding what players learn from playing video games created for entertain-

ment. The second is creating video games to teach a particular topic or skill along with

understanding how to create educational video games.

1.3.1 Learning from Entertainment Games

Research in this area aims to determine the learning effects, if any, of playing video games

which are created primarily for entertainment. Relatively few studies have been conducted

although there is a considerable amount of writing on this topic and learning from video

games in general [43, 50, 76, 77, 138]. Studies have investigated both the physical and

cognitive effects of playing video games.

The effect of video game play on specific physical skills has been studied quite thor-

oughly. These studies have shown improvements such as reduced reaction times, improved

coordination, and improved visual attention [43, 87, 155].
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There are also some results showing positive cognitive effects. According to [43], Cole

[60] claims “long-term game playing has a positive effect on students’ learning.” Other

studies, again according to [43], show improvements in “critical thinking and problem-

solving skills” [144], “observation, trial, and error and hypothesis testing” [84, 87, 140],

and “strategies of exploration.” [138, 141]

1.3.2 Educational Games

The game, Oregon Trail, created in 1971 (later marketed by [123]) is perhaps the most well

known educational video game. It was designed to teach the history and hardship of ameri-

can settlers traveling across the west in the nineteenth century. Since then, a vast number of

educational video games have been created. Among these are the Carmen Sandiego series,

Math Blaster, Reader Rabbit, and The Magic School Bus series [23, 24, 32, 38]. These

games teach geography, history, basic math, and reading skills. The two games, Rocky’s

Boots, and its sequel, Robot Odyssey [33, 34] were designed to teach fundamental logic

design.

A virtual reality game called SMILE (Science and Math in an Immersive Learning

Environment) was created in 2007 to teach science and math to young children (grades K

through 5). Characters in the game can communicate with the player using speech, text,

and American Sign Language. To succeed in the game, the player must use science, math,

and language skills to create objects needed by the game characters. This requires players

to learn not only basic science and math but language as well. The learning outcomes of

this game have not been assessed [41].
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Ke describes a study involving a series of eight games involving mathematical concepts

[108]. The games included concepts “such as measurement, comparing whole numbers,

solving simple equations, and mapping X and Y coordinates.” Fifteen students played the

eight games over ten sessions (each session was two hours). The results of the study show

a significant attitude change toward mathematics but little or no change in mathematical

knowledge.

Another recent game, Supercharged! [152], teaches the player about elementary physics

(specifically concepts of electromagnetism). The player must pilot a spaceship through an

“electromagnetic maze” by “placing charged particles” and altering an electromagnetic on

the spaceship itself. This game was evaluated with nearly 100 middle school students.

Students in the experimental group scored significantly better on a twelve question exam.

Improvements were nearly identical regardless of gender.

1.3.3 Educational Games and Computer Science

There are three main categories of research: using games as motivation for studying com-

puter science, using games as examples of computer science topics (e.g. data structures or

design patterns) and designing games which teach computer science topics.

The creation and programming of video games are being used as motivation to study

computer science [28, 111, 117, 136]. This is mainly an attempt to curtail the declining en-

rollments in computer science courses. Quite a number of game based courses and degrees

have been recently created [48, 74, 97, 125, 164].

The programming of games is also being used to provide concrete examples of com-

puter science topics. The annual ACM conference on computer science education (SIGCSE)
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and other conferences publish papers on “nifty” examples or assignments. An example

or assignment is considered “nifty” if it is fun or intriguing for students and easy to in-

clude in an appropriate course. Often the assignments are “open-ended” and therefor

are scalable to a particular students abilities. Many of these assignments involve games

[40, 131, 132, 133, 134, 135]. Game oriented programming projects have been created

which involve object oriented programming topics (such as inheritance and polymorphism),

data structures, and design patterns (such as visitor, concrete factory, state, and strategy).

Most of this research reports that students enjoy this type of project because many students

are highly motivated by creating video games [67, 93, 98, 99]. Few of these projects have

been examined carefully to determine their effect on learning outcomes however.

Little work has been done in the area of creating educational video games which teach

topics related to Computer Science. Most of this work has concentrated on games which

teach computer programming in a specific programming language. The Game2Learn group,

led by Dr. Tiffany Barnes, has created a number of this type of game [49]. Each game

teaches a small number of topics or algorithms. For example, Wu’s Castle [64] teaches

arrays and loops by requiring the player to create arrays of snowmen using C++ syntax.

Another game, Elemental: the Recurrence, teaches recursion and the depth first search al-

gorithm using the C# language. These games have been shown to have a positive learning

effect.

Lightbot [22] is a simple game which requires the player to assemble programming

tiles to control a robot. It is necessary to program the robot to visit various “goal” squares

and “light” them in order to solve the current game level and progress to the next. The

programming language provided is simple: move forward, turn left, turn right, jump, and
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“light” the current location. No educational studies have been conducted to determine if

the game is an effective teaching tool.

1.4 Goals

We are interested in creating and testing the effectiveness of games which teach the con-

cepts of boolean operators and recursion. We examine these two concepts because boolean

operators and recursive thinking are fundamental concepts in the study of Computer Sci-

ence [46]. Because we are interested in teaching concepts rather than implementation,

game play does not involve any particular programming language.

We use these games as a method for concept visualization and engagement. We surmise

that an educational video game should be effective for visualizing computer science topics

if it can provide some of the necessary properties of effective algorithmic visualizations.

We agree with the simple design of Lightbot and with Fisch [70]: any programming or

learning should be an integral part of the game. The games should also be simple so that

game play does not overwhelm the fundamental concepts being taught.

1.5 Dissertation Outline

In the next chapter, we present a literature review of research directly concerned with games

and education. We describe background and results concerning the learning effects of enter-

tainment games, the Serious Games movement, and games designed for education in fields

other than Computer Science. We then review the literature concerning games and Com-
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puter Science: using games as educational motivation, programming games as examples of

Computer Science topics, and finally games designed to teach computer programming.

Next, we provide another literature review of a more general nature. This review in-

volves background theory of education, visualizations, and traditional techniques for teach-

ing boolean operators and recursion. We start by defining and describing the concept of a

mental model [105], its purpose, and how it relates to the concept of boolean operators and

the concept of recursion. We also describe the currently known mental models that students

may have concerning these two topics. We then describe what is currently known about

algorithm visualization systems and their effectiveness in promoting positive learning out-

comes. Finally, we present a review of published techniques and methods for teaching

these two topics.

Next, we present the two case studies. The first is a game to teach boolean operators.

The second is a game to teach the concepts of recursion. We describe the design and

implementation for both games, data resulting from their evaluation, and analyze their

effect on learning outcomes. We also discuss several interpretations of the results from

these studies.

Finally, we conclude by presenting the contributions of this work to the fields of Com-

puter Science and Education. We also discuss what went wrong and right, and possible

future work in this area.
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1.6 Summary

Video games are a relatively new educational media. Educational games have been de-

signed to teach concepts from many areas: history, physics, and important social issues.

Somewhat ironically, it is only recently that video games have been designed to teach com-

puter programming. While we believe that this work is important (and it has been shown

to be effective), additional video games should be designed to teach concepts of Computer

Science rather than programming. Teaching concepts may serve two purposes: it could

supplement a traditional Computer Science curriculum by providing additional concrete

background material and it could be used to teach Computer Science concepts to non-

majors and non-professional programmers without requiring more formal training. Games

which teach concepts are also independent of any particular programming language imple-

mentation.
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Chapter 2

Review of Literature

2.1 Introduction

Schneiderman [151] describes several advantages to using games as educational tools.

First, “games provide a field of action that is simple to understand since it is an abstraction

of reality – learning is by analogy.” For computer science education games this “real-

ity” is the set of abstractions created by software and algorithms. Second, games provide

immediate graphical feedback to the player. The player can see the effect and results of

their physical actions in direct fashion. This means that “there is no syntax to remember

and therefore there are no syntax-error messages.” Schneiderman also states that “error

messages are unnecessary because the results of actions are obvious and can be reversed

easily.”

The graphical nature of video games is directly important since visual elements (images

and icons) are often used as parts of explanations and mental representations of computer

13



www.manaraa.com

systems. In a series of studies of computer users, participants were asked to explain var-

ious tasks and computer systems to another hypothetical user. These explanations were

examined to determine whether they contained verbal elements, images, icons, production

rules, or programs (one explanation could contain more than one of these styles). In one

of the studies (with 607 secondary school students), 25% of the explanations contained

images and 28% used icons in some fashion. This indicates that visual elements may be an

important aspect of mental representations of computer systems and their behavior [159].

Many types of video games also support different categories of learning simultaneously.

Gagne [75], as cited by Van Eck in [65], describes five categories of learning: “motor skills,

attitudes, cognitive strategies, verbal information, and intellectual skills”. Intellectual skills

are further divided into “problem solving, rules, defined concepts, concrete concepts, and

discriminations”. These intellectual skills are hierarchical in nature (each depends on skills

later in the list). For example, problem solving requires generating new rules from existing

rules. Rules depend on defined concepts and concrete concepts. These concepts in turn

depend on the ability to make discriminations which is the ability to determine or recognize

differences between two objects, ideas, or concepts [65].

Van Eck [65] continues by describing a simple taxonomy of seven game types. These

seven types are: action, role-playing, adventure, strategy (including puzzles), simulations,

sports, and fighting games. Each type is then tied to a subset of Gagne’s five sub-types of

intellectual skills. This connection denotes that the particular type of game can support or

facilitate the associated intellectual skill. Action games, for example, are tied to defined

concepts and concrete concepts while most of the other game types are connected to the

first four sub-types. Fighting games are the exception and do not generally include problem
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solving. None of the game types are connected with the discriminations sub-type [65]. This

means two things: fighting games should probably not be used to teach concepts which

involve problem solving and it may be difficult to design video games which teach basic

discriminations.

2.2 Games as Motivation

The creation and programming of video games are being used as motivation to study com-

puter science. This approach is partly an attempt to curtail the declining enrollments in

computer science courses and to attract under represented groups to study Computer Sci-

ence. The use of game creation has several advantages: it can be taught using a variety of

programming languages, environments, and programming philosophies, it is attractive to

many students, and it does not inherently result in “watered down” courses [51, 111, 117].

Video games can be created in many different programming languages and environ-

ments. The literature contains reports of using ActionScript and Flash, C++, Greenfoot,

Java, Python, and Scratch in game oriented courses [16, 28, 44, 45, 111, 117, 120, 137,

161]. Some environments (such as Greenfoot or Scratch) may provide better support for

novice programmers however. This wide array of possibilities helps avoid one of the crit-

icisms of the overall approach: that students will not be learning a “real” programming

language. In any case, if students do start with one of the non-industrial languages, a tran-

sition to one of the mainstream languages can be provided [117].

15



www.manaraa.com

The creation of video games is also not tied to any particular programming paradigm or

philosophy. It can be used in object-oriented language courses (“objects early” or “objects

late”), procedural language courses, or even functional language courses.

There is some evidence that the task of creating video games is attractive and motivat-

ing for many students including women. Cliburn reports that many students prefer game

projects and assignments over non-game options (even when the projects become more

difficult) [57]. In different study, a survey of 30 students (11 women) described in [117],

the students responded favorably when asked if creating video games was “fun” (average

response was 2.82 on a scale of 1 to 4) and whether they liked a game oriented course

(average response was 3.26 on a scale of 1 to 4). The average responses for the 11 women

were nearly identical: 2.9 and 3.18 for the two questions. Additionally, a game oriented

approach appears to have a positive effect on student retention. Retention rates of 85%

were also reported [117].

A series of studies described by Cliburn report similar but largely anecdotal results. In

[59] more than 70% of students chose game oriented projects over non-game projects. This

study interviewed six students and offers three recommendations: the assignment descrip-

tions should provide as much structure as possible (particularly for beginning students),

well-known games should be used in order to provide familiarity and to avoid confusion,

and the games should have a graphical element [59, 58].

Becker [51] presents a case study which shows that the complexity and effort required to

create computer games is substantially more than that required by non-game assignments.

The computer games were an implementation of Solitaire, and the video game Centipede

(both implemented using ASCII character “graphics”) [5]. The non-game assignments
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consisted of implementing a number of classes for geometric shapes and a simulation of

a greenhouse. Students completed the games in the same amount of time as the students

required to program the non-game assignments. This is an indication that student engage-

ment and motivation may be as important (if not more important) than the course material

presented. Students that are engaged and motivated are more willing to learn and do more

work. It is difficult to believe that such courses are a “watered down” version of more

traditional courses.

Using games in a course may not always be motivating to all students however. One

study conducted by Rankin et. al. [142] presents some negative effects of using games. In

this study, students “applied software engineering principles to the concept of game design”

and created video games using the Gamemaker environment [11]. Twenty (self selected)

students out of the 56 students in the course completed pre-surveys and post-surveys which

measured attitude toward Computer Science courses, computer programming, and the pur-

suit of a degree in Computer Science. Twenty percent of the students responded that they

were less likely to take another Computer Science course. Among the non-majors, 67%

were less likely to take another Computer Science course. Attitudes toward computer pro-

gramming increased for 25% of the participants and decreased for 40% of the participants.

Interest in obtaining a Computer Science degree dropped for both non-majors (67% showed

less interest) and majors (73% showed less interest). Student did report that “more time”

allocated to the “conceptualization and implementation phases” of the project would have

been beneficial because the project lasted only two and a half weeks [142]. These results

were not compared to students in another non-game oriented course or to attitudes of stu-
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dents from previous years which did not use games. This makes it more difficult to isolate

the cause of the reported changes in student attitudes.

One study has shown that there are positive learning outcomes associated with this

overall approach [117]. This study involved a rather small population of students however.

The study was not an experiment but rather a quasi-experiment (i.e. there was no control or

comparison group). The modest increases in programming knowledge that was reported is

interesting but it is not known whether these increases are due to the introduction of games

or some other factor (such as the instructor or the physical learning environment).

2.3 Programming Games as Examples

The programming of video games also provides concrete examples of computer science

topics. Many of the “nifty” assignments use games for this purpose [40, 131, 132, 133, 135,

134]. Example games used are: Hunt the Wumpus, Rabbit Hunt, Minesweeper, Asteroids,

Breakout, Missile Command, text-based adventure games, various card games, and Flip

[3, 25, 6].

Huang proposes creating automated players for traditional board games [98]. Students

create artificial players for classic strategy board games such as Connect-4, Mancala, Chi-

nese Checkers, and Go. Creating a good artificial player for Go is very difficult and is

in many ways an “open” research problem. The discussion regarding the game of Go is

continued in [99].

Wallace and Margolis [160] use Sudoku puzzles and the board game, Clue [7], as part of

an artificial intelligence course. They introduced competition between the student projects
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by timing how quickly puzzle solutions were found. This was facilitated by a website which

evaluated submissions and maintained a current “leader board”. A number of students

were highly motivated performing a literature search and implementing several advanced

algorithms not discussed in class. In general, student response to these assignments and the

competition was very positive but anecdotal in nature.

A different approach introduces the concept of “pre-games”. In this approach, the stu-

dents play a simple “game-like” version of an upcoming assignment “before designing and

coding their own programs” [81, 82]. This allows the student to become familiar with

the problem that they will soon have to solve. These simpler versions consist of playable

algorithm animations. These playable animations allow the student to both control the algo-

rithm animation and to play the game. The game play is not sophisticated but does include

a fictitious story line (an archeologist named “Professor Raymond O. Folse” is searching an

Aztec ruin for Montezuma’s treasure room) which ties the elements of the assignment to-

gether. The “pre-games” presented algorithms involving stack (using Pez candy dispensers!

[29]) and graph algorithms [81, 82].

Projects have been created which provide examples of specific algorithms and algo-

rithm design strategies. Levitin et. al. present a series of puzzles whose solutions are ex-

amples of the algorithm design strategy known as divide and conquer. Puzzles presented

include the Towers of Hanoi, tiling a region with triominos, finding a fake coin in a set of

coins using a balance, and finding all anagrams of a specified word [118]. One example is

the SIGCSE 2001 Maze demonstration program. This program provides a graphical inter-

face and framework to allow students to create and study maze traversal algorithms [143].

Another example is a project which uses the “Incredible Rainbow Spitting Chicken”. Stu-
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dents create a chicken avatar which can move back and forth and can “spit” colored circles

when a key is pressed. The circles float toward the top of the screen and are removed

once they reach the top. Because there is no limit on the number of circles created this

assignment can be used as an example for the implementation of linked lists [91].

Game oriented programming projects have also been created which involve object ori-

ented programming topics (such as inheritance and polymorphism), data structures, and

design patterns (such as visitor, concrete factory, state, and strategy). These ideas include

implementing the card game Set, a clone of the video game, Every Extend, and the old unix

game Rogue [68, 10].

The card game, Set [68], involves finding sets of three cards which match or do not

match on their various features. To form a set the three cards must either all agree or

all disagree on each of four features. The four types of features are: color (red, green,

or purple), symbol (ovals, squiggles, or diamonds), number (one, two, or three symbols),

and shading (symbols are either solid, open, or striped). Every possible combination of

these features is represented giving a total of 81 cards in the deck. As an object oriented

programming project [93], much of the implementation involves comparing cards to deter-

mine if they form a set and displaying individual cards. Card comparison is easily handled

if the various features are implemented using the Flyweight design pattern. With this pat-

tern, each feature value is created once and shared among all card which have that value

(i.e. one object representing ovals is created and all of the cards with ovals reference that

one object). This allows any comparisons to be based on references rather than values of

objects (the author, Hansen, points out that in Java this allows the use of the regular com-

parison operators “==” and “!=” rather than having to implement an “equals” method for
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each feature type). Determining if three cards form a set is then just a matter of checking

if each feature is either equal across all cards or not equal across all cards. Displaying the

cards is accomplished by using polymorphism along with the Strategy and Factory design

patterns.

EEClone [80, 79], a clone of the video game Every Extend [10], is a two dimensional

arcade style video game. The player moves an avatar trying to avoid a set of moving “ob-

stacles”. At the player’s command an explosion is generated at the avatar’s current location

which will destroy the obstacles. Destroyed obstacles also explode starting a “chain reac-

tion” of additional explosions. If enough obstacles are ultimately destroyed then the player

is allowed to generate another explosion, otherwise the game is over. The player avatar is

in one of four possible states: spawning, moving, exploding, or dead. These different states

and the transitions between them are an appropriate use of the State design pattern. The

Strategy design pattern is used to implement displaying each type of game element and

any animation sequences. The Visitor design is used to handle collisions between game

elements. The game is extensible in many ways: additional types of explosions and obsta-

cles can be added along with new types of “power-ups” such as increasing avatar speed or

temporary invulnerability.

Our own project idea, proposes the game of Rogue as a motivating example for the

use of inheritance, polymorphism, and the concrete factory, state, and strategy design pat-

terns [67]. Rogue is an “old school” Unix role playing game which originally used ASCII

graphics. The player guides an avatar through a dungeon looking for the Amulet of Yen-

dor. The dungeon contains various types of monsters, traps, and other items (such as armor,

weapons, potions, scrolls, and wands). As a programming example, Rogue has two main

21



www.manaraa.com

advantages. First, most students are generally familiar with computer based role play-

ing games (e.g. World of Warcraft). This promotes student motivation and engagement.

Second, the game provides a rich enough context to motivate the use of inheritance, poly-

morphism, and the design patterns listed earlier. For example, a concrete factory can be

used to handle creation of all of the various monster objects. This makes the adding more

monster types to the game very simple and clearly shows students the advantages of using

the factory. The state pattern can be used to implement various avatar conditions such as

paralysis, magical speed increases, and blindness (these game effects are temporary and

eventually end). Strategy is used to model the different types of monster movement. For

example, monsters can be “peaceful” and will continue to be until attacked by the player

avatar. After being attacked the monster will usually become “aggressive”. Both of these

two types of movement can be implemented using the strategy pattern and reused for all

of the different monster objects. Again this provides a concrete example for how this pat-

tern is used. Use of these patterns definitely simplifies the overall implementation. One

difficulty occurred with this project: even though the game was used in the third quarter of

a CS1 course, student teams still struggled to implement the entire game (which requires

thousands of lines of C++ code). Every team completed a playable (though limited) game

however.

Most of the research discussed above reports that students enjoy these types of projects

because many students are highly motivated by creating video games. Much of this evi-

dence is anecdotal however [67, 93, 98, 99].
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2.4 Learning Programming By Playing Games

A number of games including “Elemental: the Recurrence”, Wu’s Castle [64], The Cata-

combs, Saving Sera [49] (among other games) from the Game2Learn group [56] are de-

signed to teach the player various computer programming concepts. These games teach

simple programming involving arrays, loops, recursion, and tree traversal.

Wu’s Castle [64] teaches the concepts of arrays and loops. This game consists of two

sub-games. The first involves array manipulation. In this sub-game, the player creates ar-

rays of different types of “snowmen”. The player is first presented with for-loop parameters

(using C++ syntax) which they are allowed to change. Then the player chooses the loop

body from a menu of choices. A game character then acts out the loop execution in a visual

manner. A series of “missions” are presented to the player. Each involves creating certain

types of snowmen in the cells of either a one-dimensional or two-dimensional array. Once

the player successfully completes one “mission” they are allowed to proceed to the next. In

the second sub-game, the player avatar can interactively walk through a game level which

represents the execution path of a loop. As the avatar moves, the game reports which part

of the loop’s code is being “executed”. The authors report that playing the game before

solving homework programs helped students “create a deeper, more robust understanding

of computing concepts.” The gains were even greater for more difficult problems [64].

“Elemental: the Recurrence” is a game designed to teach the concept of recursion.

The player is asked to write several programs in C# to recursively guide an avatar. The

avatar collects tokens (which represent portions of the avatar’s sanity) by visiting nodes

in a tree structure. To collect all of tokens, the avatar must successfully perform a depth

first traversal of a tree structure. A study of the learning effectiveness was conducted.
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Participants in the study completed a pre-survey, played the game for 40 minutes, and

then completed a post-survey. The surveys contained five questions directly concerning

recursion (the questions were not published). “Elemental: the Recurrence” wraps a simple

game around typical homework assignments. This provides effective motivation (beyond

receiving course grades) for the player to complete the assignments. The game was shown

to be effective in improving learning outcomes [56].

All of these games from the Game2Learn group suffer from the fact that the program-

ming tasks are “separated” from game play. The concepts to be learned are not an inherent

part of the game world. This forces the player to “switch roles” between playing and pro-

gramming during game play [146]. This is related to the idea of “gratuitous incidents”

described by Laurel [115]. These are “incidents which have no direct bearing on the plot”

or outcome of the story. These kinds of incidents are often exhibited in an effort to “provide

intrinsic motivation in educational programs by interspersing problem-solving or tutorial

segments with pieces of games.” [115].

These are not “fatal” flaws however. Each of the games has been shown to be effective

in improving learning outcomes. Our major criticism of this approach concerns game play

(In role-playing games, sorcerers do not code in C++). If the goal of the video game is

to teach computer programming in a more or less direct fashion then new programming

languages should be designed which fit and match the world design of the game. Another

minor criticism is that these games are tied to a specific programming language. It may be

difficult to modify the games for use with another language.

In the game Lightbot (produced by Armor Games), the player is presented with a series

of puzzles [22]. The puzzles require the player to write simple programs using a graphical
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language to make a robot move and “light up” designated goal tiles in a simple world. The

language is simple and has a small number of commands: move forward, turn left, turn

right, jump, and light the current square. There are no mechanisms for iteration or condi-

tional statements. Each command is represented by a tile (with an appropriate graphical

symbol) and programs are described by creating sequences of these tiles. The program can

also include two user-created functions and there are command tiles which allow the in-

vocation of these functions. The functions do not allow parameters (there are no variables

in the language). The puzzles are challenging because the user-created functions and the

overall program cannot consist of more than 28 instructions total (12 in the main function

and 8 each in two other functions). This limitation is particularly important because there is

no construct for performing iteration. Because it is not possible to pass function parameters

and there are no conditional statements, it is not possible for Lightbot programs to contain

recursive functions.

Since the goal of Lightbot is to control the robot using a program the player does not

have to “step out of the game” while playing thereby avoiding the “magic circle” problem

[146]. Creating the program is an integral part of the game itself. This is the result of good

game design. The simplicity of the design along with the immediate graphical feedback of

the program effect create considerable player engagement and interest.

The sequence of puzzles is also well-designed. First a number of tutorial puzzles are

presented which teach the player the purpose of each command tile and how to create

programs. After these basic puzzles the difficulty increases steadily. Each new puzzle

requires more creativity and careful thought than the earlier puzzles. This further increases
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the level of player engagement. It is this high level of engagement and simple design which

make Lightbot interesting pedagogically and worth further study.

The sequence of Lightbot puzzles probably improves understanding of command se-

quences and some aspects of functions (particularly code reuse and invocation). The game

cannot improve understanding of variables, iteration, or conditionals since the program-

ming language does not include these features. We are not aware of any educational studies

involving this game.

2.5 Summary

The study of video games is an important emerging field of academic study. Video games

are interesting both because of their potential educational impact and as an art and media

form. Video games are being used to attract students to study Computer Science and as a

method to retain them once they start. Games are believed to motivate and engage students

when they are used as course projects and assignments. There is some evidence that this

is, in fact, the case for many students. The motivation and engagement arise from the

interactive and graphical nature of the video games themselves though competition may

also play a role for some students [116].

Our two video games can be considered a continuation of the “pre-game” work of

Giguette [81, 82]. He proposed playable animations as an aid toward student understanding

of upcoming implementation assignments. These playable animations generally contain

two sets of controls: one set for the algorithm visualization and one set for game play. Our
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thesis work aims to tie game play and the educational content in a more seamless fashion

while still acting as an effective visualization.

Our video games parallel the work of the Game2Learn project [56]. Their important

work shows that video games can be created which improve student understanding of the

programming of various algorithms. Our work creates games which try to teach under-

lying and fundamental concepts rather than programming in any particular programming

language.
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Chapter 3

Background Theory

3.1 Mental Models

Veer [159] defines a mental model, “... as any set of mental representations that is used by

a human being to understand a system.” In general, mental models represent some portion

of the structure of a system in the same manner that “an architect’s model or a molecular

biologist’s model” represent the structure of a building or a molecule. Johnson-Laird con-

tinues: “Like these physical models, a mental model is also partial because it represents

only certain aspects of the situation. There is accordingly a many-to-one mapping from

possibilities in the world to their mental model” [105]. In other words, one mental model

represents many similar systems or situations. New mental models may be created from vi-

sual perception, combining existing mental models, or comprehension of written or verbal

discourse [104].
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A mental model is viable if the model allows the person to successfully apply it to the

concept or situation which is modeled (otherwise it is called a non-viable model). Note that

the model does not itself have to be correct; it is the successful application which makes the

model viable. Non-viable models may lead to misconceptions about the modeled system

or situation. Because we are interested in creating games to teach boolean operators and

recursion, we are specifically interested in different mental models students may have of

these concepts.

3.1.1 Models of Boolean Expressions

One traditional method for teaching boolean expressions starts by mathematically defining

the three common operators (which we will denote using AND, OR, NOT to avoid confu-

sion). These operators are shown as functions which act on a set of variables and that have

a value of “true” or “false”. These functions are usually visualized using truth tables. The

information presented is certainly accurate. If there is a drawback with this method it is

that some students have little or no experience with formal mathematical definitions. These

students may have difficulty constructing appropriate mental models since they do not have

much context to build upon.

Another drawback is the choice of names for the operators themselves. The natural

language meaning of the word “and” in particular is largely dependent on conversational

context. The boolean operator AND has no such problem of ambiguity or dependency

on context. This may cause confusion when the boolean operator is seen to “behave”

differently than what the student knows from their conversational experience. This was
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shown in a study by Pane [130]. Because of this confusion has been proposed that novice

programming languages should not use the word “and” to represent AND [121].

Novice programmers often have difficulties creating correct boolean expressions and

comprehending existing expressions [83, 86, 96]. Much of this difficulty is due to fact that

the words used to signify the boolean operators often have different meaning when used

in everyday conversation. While the operators in the programming language have well

defined semantics, the corresponding words in english are ambiguous and the meaning

often depends on the context. For example, suppose someone is asked to count the number

of blue and green symbols in Figure 3.1. The person may respond that there are no symbols

which are both blue and green (so the answer is zero) or they may interpret “and” as a

disjunction and report an answer of six (the sum of the number of blue and the number of

green symbols).

Most of the systems used in Information Retrieval use queries based on boolean op-

erators. Users specify a query using keywords and common boolean operators (such as

NOT, AND, and OR). Because several studies have shown that users have difficulty accu-

rately converting a natural language description into a correct boolean query some systems

attempt to perform this translation automatically. There has also been work to find better

methods for representing boolean queries [86, 124, 130, 151].

In mainstream computer programming languages, a boolean data type is often provided

and textual symbols or keywords are provided for commonly used boolean operators. Vari-

ables which have this type can have only two values “true” or “false”. In languages where

a data type is not provided, the value of zero is often considered to be “false” and any other

value is considered to be “true”.
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Figure 3.1: Array of Various Shapes

Another source of difficulty may be caused by mental models themselves. Johnson-

Laird has shown that “... mental models represent only what is true, not what is false. This

principle of truth applies both to premises as a whole and to clauses within them. For

premises as a whole, models represent only the possibilities that are true” [105]. Even if

we create viable mental models of boolean expressions these models may not directly assist

us in determining what makes an expression false.

Creating viable mental models of boolean expressions may be difficult due to lack of

experience and confusion arising from previous natural language knowledge. We propose

to use a video game to increase familiarity with boolean operations and to lessen the effect

of the ambiguity arising from experience with natural language. We hope that after playing

our game, it will be easier for students to create viable mental models of boolean operations.
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3.1.2 Models of Recursion

We are also interested in mental models of recursion. A mental model of recursion is

viable if it allows one to “accurately and consistently represent the mechanics of recur-

sion” otherwise the model is considered non-viable. Non-viable mental models arise from

not understanding “the mechanisms of recursion or ... concepts fundamental to recursion”

[85]. A viable mental model concerns the functions of planning and execution as described

above.

Kessler believes that part of the difficulty with learning recursion is that “... there is

no natural everday activity than can serve as a precursor for recursion” [109]. It may

be difficult to find recursive activities but there are real world examples and situations

that imitate recursion however. Russian nesting dolls, pictures such as the packaging for

Droste Cacao, and many of M. C. Escher’s paintings, are all examples of self-referential or

recursive artwork.

In a study of first year students, Gotschi et. al. observed one viable model (the copies

model) and a number of non-viable models (looping, active, step, magic, return-value and

other odd models). [85]. It is interesting to note that this study asked participants to under-

stand and write programs in Scheme (a language which relies heavily on recursion).

The control flow of execution of a recursive function can be divided into two parts. The

active flow consists of times when the control is being passed to new function invocations.

Passive flow consists of those times when the control is being returned back from those

invocations [78]. Both of these flows must be present in a viable mental model of recursion.

The Copies Model is described by Kahney in [106]. In this model, a new copy of

the recursive function (along with a new environment) is created each time the function
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is invoked. The new copy is executed and any results are returned to the calling function.

The copies are created during the active flow of the recursive process. During the passive

flow, these copies and the associated environment are destroyed as they complete their

computation. This model can be viewed as a special form of delegation as described in

[66]. This model is always viable.

Expert programmers are believed to possess this cognitive model. This belief is mostly

based on a survey conducted by Kahney [106]. In the survey, participants were presented

with a simple programming problem. The problem consisted of performing the transitive

closure of a property on a simple set of data. Participants were presented with three possible

“solutions”. The first “solution” was actually incorrect and if chosen would demonstrate

that the participant had a non-viable cognitive model of recursion. The second solution is

tail-recursive and does not require any calculation in the passive flow. The last solution

is the most complex with the recursive call occurring in the middle of the function and

requiring calculation in during the passive flow. The study assumes that both of the lat-

ter solutions should be chosen if the participant possesses the Copies cognitive model of

recursion. After choosing the solutions that were believed to be correct, the participants

were asked to describe why each solution was chosen or rejected. Eight out of nine expert

participants chose both correct recursive solutions [106].

Kahney also included “novices” in the study. Unfortunately previous programming

experience was not included in the survey questions so it was unknown whether the par-

ticipants were truly “novices” or not. Only one participant could be strongly classified

as possessing the Copies model. Four participants showed strong evidence for possessing
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the Looping model (described below). These results led to an early attempt to describe

different cognitive models of recursion.

The looping model occurs when, “... the recursive procedure is viewed as a single ob-

ject rather than a series of instantiations and thus recursion is seen as a form of iteration.

The solution is calculated once the base case is reached, thus the base case is seen as the

stopping condition of the loop.” [85]. Because the recursion is viewed as iteration, neither

the active flow nor the passive flow are recognized (this is because there is no recognition

that the procedure is being invoked more than once). The looping model is viable for recur-

sive functions where the final result can be calculated at the point where execution reaches

a base case [147].

Another model, the Active Model, does not account for the passive flow only the ac-

tive flow. The recursion is assumed to end when the execution reaches a base case. Any

calculations performed during the passive flow are ignored [85]. The difference between

this model and the Looping Model is that the active flow is correctly modeled. The Active

Model is similar to the Looping Model in that it may be viable for some recursive functions

but is not viable in general.

In the Step Model, only the conditional structure of the recursion is evaluated. There

is no apparent recognition of either the active or passive flow. The student has “no un-

derstanding of recursion”. The incorrect evaluation “... involves either execution of the

recursive condition once, or of the recursive condition once and of the base case.” [147].

Sanders also discusses the Magic or Syntactic Model. In this case, the student shows

no clear understanding of how recursion works but the student is able to match on syntactic

elements. This is often a precursor to the Copies Model [147].
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Sanders et. al. report that students should be presented with a recursive function which

involves both the active and passive flows in the evaluation of the result earlier rather than

later. In other words, it may help to show a complex example sooner rather than starting

with simple examples and progressing toward more complex examples. [147].

One of our video games acts as a visualization and example of recursion. During game

play, conditions can occur where the current game level is suspended and a new game level

is created. All of the unfinished game levels are shown superimposed on one another as

a stack of game levels. We believe this representation will aid the formation of the viable

Copies mental model.

3.2 Visualizations and Representations

A stated earlier, the meta-study by Hundhausen et. al. [100], has shown that visualizations

can be an effective teaching tool. According to Hundhausen, in order to be effective, the

visualization software must engage the learner. The level of engagement is more important

than features of the visualization software.

An engagement taxonomy was created by a 2002 ITiCSE working group and is de-

scribed in [127]. The taxonomy includes six levels of engagement: No Viewing, Viewing,

Responding, Changing, Constructing, and Presenting. The first level is to not use the vi-

sualization and the second level consists of passive observation. The “Responding” level

requires the student to view the visualization and answer questions asked by the visual-

ization system (or some other source). The next two levels require the student to alter an

existing visualization or create a new one. Alteration usually consists of specifying new
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parameters or input to the algorithm being viewed. The final level consists of having the

student present a visualization to an audience [88].

The meta-study [100] presented a number of interesting results. Nine of the examined

studies engaged the participants at the passive or “Viewing” level. Only three of these

studies showed significant results. For the twelve studies which engaged the participants at

higher levels, ten showed significant improvements in learning outcome.

Two studies used the “Responding” level and their results are somewhat contradictory

(one study [54] reported a positive learning outcome and the other [103] reported no effect).

A later study [88] reports a significant positive effect. There were also two studies involv-

ing the “Changing” level. Both studies show improvement over engaging students at the

passive level. It is currently unclear whether construction of a visualization is significantly

better than the previous levels and as of 2003 no studies have been conducted concerning

the “Presenting” level [88].

In educational games, the concepts being taught are often portrayed graphically [51]. It

is unclear where games fit into the engagement taxonomy described above however. Clearly

video games require engagement at least at the “Viewing” level but is unclear whether

playing and reacting to a game is equivalent to answering questions (i.e. participating at

the “Responding” level).

A more recent work [122] lists a “significant subset of features that an increasing body

of educational research has found necessary if visualizations are to result in actual learning

on the part of the viewer.” The list includes: accompanying text, variety, interactive ques-

tioning, “the ability to move backward and forward through the visualization”, and “the

ease of integration into course management data”.
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Accompanying text consists of additional information (i.e. textual descriptions of the

algorithm being viewed or a view of program code which matches the current state of the

visualization). This additional information is “necessary to provide the learner with an

explanation of the algorithmic context for the graphics they are watching.” (originally from

[145] and cited in [122]).

Variety is the ability of the student to alter the “parameters” of the visualization. This

allows the student to examine the effect of various input on the behavior of the algorithm

and its visualization. This greatly increases the power of the visualization [122, 127].

The student should also occasionally stop and reflect on what the visualization is show-

ing them. This is accomplished by asking the student questions during the execution

of the visualization. It is important that the questions avoid repetition and predictability

[103, 122].

Most visualization systems provide the student with the ability to step both forward and

backward through a visualization. This feature is provided so that if the student “becomes

confused” they can easily repeat portions of the algorithm animation [122]. Finally, student

responses should be recorded in order to provide additional feedback and to assess the

students’ progress in understanding the algorithm being visualized [102, 122, 145]

Most of these principles are relevant to the design of educational games for visualizing

computer science topics. For many games, additional text is provided as game manuals,

in-game instructions and tutorials. Variety, in many games, is “built in”. The player of the

game provides the input and the game responds with the resulting behavior. The necessity

of reflecting on what is happening during game play is also “built in” to well designed and

“deep” games [51]. The ability to move backward and forward through time is available in
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games (usually in a limited fashion). Most games do not provide the explicit ability to step

backward and forward in game play. If something “goes wrong” and the player becomes

“confused” then the player must retry some portion of the game (either continuing with

the current “life” or by restarting with the next “life” or a new game). The final property

can be accomplished by having the educational game record relevant game play for later

examination.

Our video games follow several of these principles. Regarding the principle of addi-

tional text, the two games are very simple requiring minimal instructions and advance from

simple situations to those which are more complex. Concerning the principle of variety,

while we do not explicitly allow the person playing to provide “parameters” in order to

explore their effects, the games do show quite a number of different situations. Our games

do not provide the ability to step backward during game play. The player can only restart

the game from the beginning. The games also do not record game play.

3.2.1 Representations of Boolean Expressions

Boolean expressions can be represented visually using many different methods including

truth tables, Venn diagrams, and decision tables [86, 124].

Another method is the Shneiderman’s Filter-Flow model [151]. In this method, criteria

selection boxes show a list of possible values for each particular attribute in the expres-

sion. Criteria selection boxes are connected together by attaching the output of one box

to the input of other boxes. Width of the “flow” denotes the size of the selected set. An

AND operator is shown as a series of these criteria selection boxes. An OR operator is

shown as either multiple selections within a single criteria selection box (when the OR in-
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volves one attribute) or as parallel criteria selection boxes (when the OR involves multiple

attributes). The NOT operator is represented by inverting the currently chosen values in a

criteria selection box.

Pane [130] proposes another representation called match forms. A match form is a

tabular representation of a boolean expression. Each entry in the table corresponds to a

property described in the expression. For example a match form concerning geometric

shapes might have three table entries, one for the shapes name, one for the shapes color,

and one for the size of the shape. Each entry in the table is a disjunction of the criteria

desired (i.e. the entry for color might be “red or blue”). The overall boolean expression is

the conjunction of each of the table entries. Pane showed that this representation is often

easily understood by novice programmers [128, 130].

3.2.2 Representations of Recursion

There have been many attempts to develop effective techniques for teaching recursion.

These techniques include visualizations, new metaphors and analogies, and methods for

understanding student mental models and misconceptions. According to Ben-Ari [52],

there are two general approaches: using analogy with real-world objects and using dia-

grams of activation records. The analogies demonstrate that recursion occurs “naturally”

in the real world. Diagrams of activation records show how recursion is usually executed

on a computer.

Examples described in [52] include russian nesting dolls or puzzles. Russian nesting

dolls are sequence of different sized hollow figurines, each containing the next smaller

sized doll inside it. The dolls are a simple model of recursion. Each doll represents one
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instance of the recursive problem (or one invocation of the recursive function). Since each

doll is a smaller replica (or clone) of the first and largest doll, this analogy should directly

aid the formation of a viable cognitive model of recursion. The sequence of real dolls is

typically linear and cannot directly represent a function with more than one recursive calls.

One puzzle, the Towers of Hanoi, is often used in teaching recursion. The puzzle is to

move a stack of disks (each of different size) from one of three pegs to another with the

restriction that no disk can be placed on top of a smaller disk. Moving a stack of n disks

to a goal peg can be accomplished by moving a stack of n− 1 disks to a different peg than

the goal, followed by moving the last disk to the goal peg, and then moving the stack of

n− 1 disks to the goal peg on top of the last disk. Moving the stack of n− 1 disks can be

accomplished recursively in similar fashion. This is an interesting real-world example of

recursion because it involves two recursive invocations (to move the n− 1 disks before and

after moving the last disk). While the puzzle can be solved recursively, it is unclear how

the Towers of Hanoi models recursion in general.

Diagrams are used to visualize the current state of the recursive procedure with the

stack of activation records and including all variables and their values. Ben-Ari criticizes

both these approaches claiming that the commonly used analogies are “weak” and there

is little connection between the real-world example and any recursive computer algorithm.

The second approach is problematic because one must explain the stack data structure and

activation records for which the student may not be ready [52].

There are many different diagramming techniques for designing and specifying com-

puter software. Several of these techniques can be used to form the basis of visualizations

of recursive procedures.
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Data Flow Diagrams (DFD) show the flow of data through the procedure. Data Flow

Diagrams do not show order in which event occur however [156]. The representation of

a recursive function consists of one “process” which consumes the initial input, may send

output back to itself, and ultimately produces its final output (this is a graphical representa-

tion of the “looping mental model” misconception). If the DFD is modified so that it shows

each recursive invocation as a separate “process” then the diagram more clearly represents

the recursion. This is a graphical representation of the Little People Metaphor where the

Little People can be “cloned”. We describe the Little People Metaphor in Section 3.2.7.

Nassi-Shneiderman diagrams [156] show the flow of control of a procedure. A recursive

call is depicted in the same way as any other function call. The diagram does not show that

a recursive call is to a new copy of the function. There is nothing explicit in the diagram

which assists the learner in acquiring a correct mental model. If the recursive function call

is replaced (graphically) by a smaller copy of the entire function diagram then the correct

mental model becomes explicit. The complete diagram then becomes a depiction of the

execution stack (one of the main visualization methods of recursion).

3.2.3 Classic Teaching Approaches

One standard approach is to describe in detail when to use recursion to solve a problem.

This according to Ford [71] “also gives some indication of how it is used.” Specifically

“Recursion may be used to solve a problem if that problem exhibits properties such that:

• Solving any instance of the problem (except the smallest) requires solving one or

more smaller instances of the same problem.
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• The smallest instances of the problem can be solved directly, usually in a trivial

manner.

Another approach is to teach recursion as an abstraction using the concepts of procedure

invocation and mathematical induction [72].

These two traditional approaches consist mainly of presenting the student with defini-

tions of what it means to solve a problem recursively and recursion itself. Both approaches

(especially the second) are mathematical in nature. Since few students have a strong mathe-

matical background these approaches do not always provide much context or build on what

the student currently understands. This inadequate background makes it more difficult for

the student to construct a personal mental model of recursion.

Another method is to teach recursion by presenting the students with a series of ”clas-

sic” problems and their recursive solutions. These classic problems usually include the

following: Factorial, Power, Binary Search, Fibonacci, and Towers of Hanoi. Other less

used problems include: the Eight Queens Problem, Palindromes, and the Quicksort algo-

rithm [107]. This approach may assist in the construction of a viable cognitive model of

recursion. In fact, later research has shown that the complexity of the problems used do

matter. If the problem is too simple then the student does not understand the role of both

the active and passive flows in the function execution [147].

Bruce et. al. report on their experience when students are taught structural recursion

before iteration [53]. New assignments were created which use recursively defined lists

and other structures. These structures are created using Java interfaces and classes which

implement those interfaces. The authors claim that this reinforces the object-oriented pro-

gramming style introduced earlier in the course and gives the students more experience
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with recursion. This experience is concrete in the sense that recursive calls are invoked on

existing objects (rather than relying on behind-the-scenes creation of activation records on

the stack). Discussion of activation records can be avoided (or at least postponed). While

the authors did not explicitly test for learning effect, they did report an improvement in

student attitude toward the complexity of the course. Course evaluations, from one year to

the next, contained lower overall course difficulty scores.

3.2.4 Algorithmic Approaches

Students are given a recipe or algorithm to follow for creating recursive functions. The

most well known of these is the design recipe described in “How to Design Programs”

[69]. The recipe consists of the following steps:

• perform Data Analysis and Design

• specify the Contract, Purpose, and Header

• create a set of Examples

• copy the appropriate Template

• define the Body

• run Tests

The appropriate template already contains prototype selector expressions, conditionals,

and recursive calls. The student then must “fill in the blanks” when defining the body. This

design recipe is a general approach to solving many programming problems. It is applicable
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to producing recursive functions because it was created to be used by students programming

in Scheme. Since Scheme is a functional programming language most programs require

recursion.

A similar, but perhaps more specific, approach is described by Kay in [107]. These

steps are shown below:

• Specify the function prototype

• Write comment (including pre-conditions, post-conditions, and return value

• Code the base case

• Think of a concrete example and closer second example

• Use the Force

• Solve concrete example and closer second example

• Code the recursive in an else statement

3.2.5 Visualizations

A number of visual representations have been developed for recursive procedures [71, 157,

162]. These ideas graphically represent the execution stack and activation records in some

fashion [52].

The Tree Model (or Tree Diagrams) are described by Kruse in [112]. The main concept

is to draw a n-ary tree which represents the execution of a recursive function. Each node

in the tree represents one function invocation. Child nodes represent function invocations
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performed by the parent invocation. The nodes can be annotated to show any parameter

values. The diagram itself is static and only shows the one state of the execution.

Drawing a series of Tree Diagrams or providing a dynamic visualization of the dia-

gram conveys more information. Further annotation of the tree nodes can be used to show

function return values and other information. These extensions are called Activation Trees

[95]. As in Tree Diagrams each node represents one specific function invocation. Each

node contains the function name, a list of the parameter names and their current values,

and a return value if appropriate. This approach extends Recursion Trees (described in

[149] and elsewhere) by adding information from the runtime stack to the nodes.

Wu [162], describes a visualization program called SimRECUR. SimRECUR provides

visualizations of three common conceptual models of recursion. These are the Stack Sim-

ulation Model, the Copies Model, and the Tree Model [112]. Each model is one way to

describe how the computer behaves during execution of the recursive function. In addition

to these, SimRECUR has a ”codes” window which shows the code associated with the cur-

rent invocation of the function as a series of stacked subwindows. A series of buttons allow

the user to control the execution of the recursion. SimRECUR allows the student to write

code in C, Pascal, or Basic. Recursive functions are “allowed to have one or two param-

eters.” There is limited error checking. The visualizations were well received by students

(as noted in an after use survey). The authors do not report the number of students who

participated in the survey.

Dann et. al. [63] describes the use of the Alice programming environment [1] to visu-

alize recursion. Alice allows the programmer to quickly create programs and stories which

involve characters and other objects moving in a three-dimensional virtual world. Scripts

45



www.manaraa.com

for the objects are written by dragging building block statements from menus into a pro-

gramming window. While Alice does not truly provide recursion itself (at least at the time

this paper was written), it can be used to write functions which can mimic recursive behav-

ior. A timer is used to determine when the “mock” recursive function should be invoked

again. The timer is also required to create a delay so that the animated characters have time

to perform their defined motions (otherwise the animation may not be synchronous with

the function execution). The authors report that students still encounter typical mistakes

such as not creating base cases and not reducing the problem to a smaller subproblem. The

graphical feedback provided by the visualization allows the student to find, understand, and

fix any problems more quickly.

Franceschi introduces the idea of building movies to teach fundamental concepts in-

cluding loops and recursion [73]. The visualization as presented is quite limited and con-

sists of showing the currently executed line of code. There are a limited number of pre-

defined movies (the movies are not generated or created by the user). The function param-

eter value is changed whenever the function is invoked during the recursion. There is no

portrayal of the execution stack.

3.2.6 Dramatizations

In [52], Ben-Ari describes the concept of dramatizations for teaching recursion. The drama-

tizations are real-world problems which can be physically “executed” by students during

a lecture. The dramatizations are carefully designed so that they correspond directly to a

programming problem which can be solved using recursion. Three example dramatizations

(and their corresponding programming problems) are presented:
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• Open a present (Recognize balanced parenthesis)

• Build a chain (Compute factorial)

• Eat a chocolate bar (Search an array)

The dramatization algorithms are described in english-based pseudo code and are “ex-

ecuted” by students with physical materials. Recursive calls are represented as requests

for assistance from neighboring students and by passing any and all necessary materials to

those neighbors. The main advantages are: the dramatizations are fun, explanation of the

program directly corresponds to the dramatization, and visualization of the stack is implicit

and requires no additional explanation. The dramatizations are also physical concrete ac-

tivities. It is believed that students are more likely to be engaged than when presented with

more traditional problems (such as calculating factorial or checking for palindromes) [52].

3.2.7 Metaphors and Analogies

The Little Person metaphor proposes that computers are inhabited by “a large community of

little people”. Each of the little people is a “specialist at a particular procedure”. Every little

person has one set of instructions (also known as a script) but more than one person may

have the same set of instructions. In addition, each person is wearing a vest with pockets.

These pockets each have names and are used to hold the parameters of the person’s script

[94]. In the case of a recursive function, the little person hires another specialist (in the

same procedure) when the recursion occurs. There is a slight problem with this portion

of the metaphor. The metaphor assumes that all of the necessary little persons already

exist. It also does not really help to describe how the execution is actually carried out
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by the computer. Since the people always exist, they are never created or destroyed even

though the people essentially represent activation records on the execution stack. A better

metaphor would allow a little person to create clones of herself to perform the work of the

recursive call. After the work is completed, the clone is then destroyed. This improved

metaphor is closer to the creation of new activation records and the maintenance of the

run-time stack that is performed by the computer as it executes the recursive function [66].

The Little People metaphor has been used by Logo teachers “for years” [94]. No studies

have be carried out to determine the effectiveness of this approach.

3.2.7.1 Revising the Little People Metaphor

We now describe a revision of the Little People metaphor that we believe is more effective

and closer to the Copies Mental Model of recursion. Our revision still based on delegation

but the actors are created and destroyed rather than pre-existing. We agree with the Little

People metaphor in that delegation is an effective method to teach recursion which nearly

anyone can understand. Most people are familiar with the concept of someone delegating

a task to another person. Our method is based on this idea and presents recursion as a

particular form of task delegation. We believe that this method improves understanding of

how to program recursive procedures (especially by end-users and novice programmers).

The work described in the remainder of this section was previously published in [66].

3.2.7.2 Real World Delegation

Nearly everyone has had the experience of working for someone or being the ”boss” them-

selves. In this context, work tasks are often delegated from the boss to the worker who will
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complete the task. If necessary the boss gives the worker instructions describing how the

task should be accomplished. The boss often waits for the workers to finish the task and

expects some sort of feedback or result. To be complete, the boss recognizes a problem

which he or she cannot solve. The problem is then decomposed into smaller problems. The

boss identifies workers who are able to solve these smaller problems. The boss delegates

these subproblems to the workers and waits for the results. When all of the workers have

finished, the boss then can solve the original problem. This is the Divide-Conquer-Glue

method as described in [158].

For example, consider a restaurant owner who has just closed the restaurant for the

evening. There are several tasks which must be accomplished before going home: tables

cleared, dishes must be washed, floors swept, and the kitchen cleaned. Suppose the owner

has four workers. The owner assigns each worker a single task. Each worker does what

is necessary to solve their individual problem (the one washing dishes may have to wash

one or many dishes). There can be no further delegation because there is no one else at

the restaurant. When the workers are finished, the overall task is finished and everyone can

leave the restaurant and go home.

3.2.7.3 Virtual World Delegation

The virtual world of computer programs is not the same as the real world. This profoundly

affects the way that delegation can be used to solve problems. The boss wants to solve

the original problem. The boss recognizes that he or she cannot solve this problem alone.

Again the problem is decomposed into smaller problems. Things are different when assign-

ing the tasks to workers however. The boss has additional powers which are not available in
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the real world. Imagine the boss now possesses a magic wand. This wand has two powers:

it can create new workers out of thin air and it can destroy them utterly and completely.

Using the magic wand, the boss can create new workers and as many as desired. The sub-

problems can then be assigned as before. The boss not only decides how to assign the

subproblems to the workers; the boss must also decide how many workers are needed or

desired. When the subproblems are solved, the boss again has new options available. The

created workers can be kept to be used again later or they can be easily destroyed using the

wand.

Revisiting the restaurant example above, suppose instead that the restaurant described

is a ”virtual” restaurant. There are still four tasks but the owner can now create as many

workers as desired. In addition, each of the workers could create workers as well. For

instance the owner may elect to create one worker for each of the four tasks. The worker

washing dishes could then create hundreds of workers perhaps one for each dish which

needs to be washed.

This is similar to the Little People metaphor [94]. This metaphor models computation

as being carried out by a number of ”elves” each of which is an ”expert” in performing a

particular task (such as printing a string). The metaphor is effective in describing how a

computation is carried out but we believe it does not always aid novices in creating pro-

grams. The difficulty is that students may realize that there is an expert ”elf” for every task

(including the program the student is trying to create). This misconception can lead the

student to believe that no new code needs to be created. They just need to tell this ”elf” to

perform its task. In other words, the student may believe that the computer already knows

how to solve the student’s programming problem. The delegation framework avoids this
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problem (and is more general) because it does not assume that the workers are ”intelligent”.

It may be necessary that the boss inform each worker how the subtasks are to be solved.

3.2.7.4 Virtual World Recursion

Recursion is a special case of virtual world delegation. Rather than create new workers,

the boss creates clones of himself or herself as the workers. Since the clones are copies

of the original boss they can create additional clones of themselves (clones of the clones).

This can lead to problems if the clones do not stop this creation at some point. The cloning

process stops when the problem that remains is simple enough that it can be easily solved

(i.e. when the clone can solve the problem assigned to it without any requiring additional

help from more clones of itself). Note that the clones have no additional knowledge or

abilities beyond those that the boss possesses. The clones are exact replicas. Because of

this, it is necessary that the boss know when this stoppage should occur and how to break

each problem down into simpler problems.

In the restaurant example, this means that the owner must know how to perform each

of the four tasks. However the owner does not have to do all of the work alone! Using the

wand, the owner can create clones to accomplish portions of the work. In fact the owner

can create as many clones as he or she desires. Each of the clones can be assigned any

of the tasks. Each of the clones can also create more clones as desired to accomplish the

assigned tasks (because the clones have the same power and abilities as the owner).
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3.2.7.5 Virtual World Iteration

As pointed out in [158] iteration is a special case of the Divide-Conquer-Glue method. It

can also be specified in terms of delegation. For example, consider the problem of having to

wash a pile of dirty dishes. The boss may decide to solve the problem alone (may not have

a choice!). In this case, the boss still divides the problem into smaller subproblems; there

is just no one else to which work can be assigned (in some sense iteration is the degenerate

case of delegation). The problem is divided into one dirty dish and all of the remaining

dirty dishes. The boss chooses a dish from the pile, washes it, and places the result in a

pile of clean dishes. He then attacks the problem of washing the remaining dirty dishes in

similar fashion. This problem can also be solved recursively if the boss has the ability to

create clones. This different approach is described in the next section.

3.2.7.6 Solving a Problem Recursively

There are several conditions which must be true in order to solve a problem using recursion.

These conditions must be conveyed to the student in an understandable way. Usually the

conditions are described as a set of base cases and a set of recursive cases: (Base Cases)

There are simple problem instances which can be solved immediately. (Recursive Cases)

The problem is reduced to smaller subproblems which are solved recursively.

When viewed in the light of delegation, these conditions are expanded to make the

situation more clear to the student or end-user: (Base Cases) The boss must know how

to solve simple problem instances without delegating to workers. Each of these simple

problems is a base case of the recursion. (Problem Division) The boss must know how to

divide a problem into smaller subproblems. This will move the process toward completion

52



www.manaraa.com

and eventually force the recursion to end. (Create Clones) The boss must decide how many

clones to create. Usually this is one clone for each subproblem. (Assign Subproblems)

The boss must be able to assign the smaller subproblems to the clones. Usually this is

one subproblem for each clone. (Combine Results) The boss must combine subproblem

solutions into a solution for the overall problem.

Consider again the problem of washing a pile of dirty dishes. To solve this problem

recursively, the boss can divide the problem into the two subproblems of washing one dish

and washing the remaining dishes (this is just one example of how to divide this problem.

There are many ways the problem could be divided). The boss could create two clones.

The boss can then assign these two subproblems by assigning the single dish to one clone

and the remaining dishes to the other clone. The first clone (which receives the single dish)

must know how to wash it without creating more clones or the cloning will never stop (this

also implies that the boss must know how to do this also because the clone and the boss have

the same abilities). The second clone (which receives the remaining dishes) can perform

the same process as the original boss. The second clone will create two clones and assign

a single dish to the first clone and any remaining dishes to the second clone. Eventually

these dishes are cleaned and combined into a single pile. Finally, the boss could combine

the work of its two clones by placing the single clean dish (cleaned by the first clone) with

the other remaining clean dishes (cleaned by the second clone or its clones) into one group

of clean dishes.

We believe that this expanded list of conditions described above is easier for students

to understand. It makes explicit the fact that there may be choices as to how many clones

to create and how to assign the subproblems to them.
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3.3 Summary

The theory of Mental Models is one of the current systems for describing not only how we

mentally represent concepts, systems, and ideas but also how we reason about the world

and events [105]. If this theory is correct, the creation of viable mental models is critically

important.

Several studies have been conducted in order to understand and identify various Men-

tal Models of boolean expressions and the concept of recursion [55, 85, 113, 147]. Mental

Models of boolean expressions have been studied in order to investigate how we reason and

think [105]. Some additional work has been done to improve representations of boolean ex-

pressions for programming and query languages [128]. For recursion particularly, consid-

erable effort has been expended in creating new representations and dynamic visualizations

in order to aid student understanding.

Our work builds on these ideas by using video games as a new form of visualization of

boolean expressions and recursion. These visualizations are different than more traditional

approaches in that the student no longer has complete control over visualization events.

Student engagement is gained through game play and entertainment rather than asking the

student questions about visualization events.
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Chapter 4

A Game For Teaching Boolean

Operators

4.1 Introduction

We present a simple video game designed to teach the player fundamental boolean op-

erators. Two studies, one with high school students and one with college students, were

conducted to test the effect of our game on learning outcomes. We report the results from

both studies. Our results show a modest gain in learning outcomes. Unfortunately it ap-

pears that these gains are not the intended outcomes.

4.2 Not! The Simpsons Donut Drop

Our game, named “Not! The Simpsons Donut Drop”, is a simple two dimensional side

view video game. The player avatar is Homer Simpson. The player moves the avatar
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Figure 4.1: Homer wants Donuts which have Sprinkles and are Small or Large in size

from side to side at the lower edge of the game screen trying to catch falling donuts. The

donuts have three properties: a flavor such as chocolate or lime, a size which can be small,

medium, or large, and type of topping which can be sprinkles or none. At the beginning of

each game level, Homer is redrawn so that his shirt shows which types of donuts he wants

to catch. During each level (there are approximately twenty) a number of donuts fall from

the top of the screen. To succeed the player must move Homer to catch the appropriate

donuts. An example game level is shown in Figure 4.1. In this example, Homer should

catch all donuts which have sprinkles and are either small or large size (the donut in the

figure satisfies these criteria).

During the early levels, Homer’s shirt shows the donut criteria in an english notation

similar to match forms [130]. The criteria listed are conjuncts (i.e. all criteria are part of an

overall AND expression). Each criteria is either a simple negation or the disjunction of a
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Figure 4.2: Homer wants Chocolate Donuts which are Not Small (English notation)

series of criteria. The current version does not allow both negation and disjunction within

the same conjunct.

In later levels, the criteria alternate between english and an equivalent Java syntax. This

is to show the equivalent symbols in the two notations (i.e. “not” is equivalent to “!”). Note

that the game does not use explicit notation for the AND operator because it is implicit in

the match form notation. This notation was chosen for two reasons: it is compact which is

important because there is limited space available on Homer’s shirt and it has been shown

to be effective with users [130]. After showing the player the various equivalencies, the

remaining game levels use the Java notation exclusively.
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Figure 4.3: Homer wants Chocolate Donuts which are Not Small (Java language notation)

4.3 Game Design and Implementation

We implemented the game in Java using the Greenfoot environment [16]. One of the main

goals of this work is that the game should teach the meaning and concept of boolean oper-

ators not programming language syntax. Because of this goal, the game allows the use of

different notations. This allows testing the effect of each notation on comprehension and

learning. Comprehension results could help the designers of programming languages and

end-user systems. Learning results could help instructors and educational game designers.

Another goal was to create games which can also serve as programming examples.

All of the code is available to both instructors and students. This serves several purposes:

instructors can modify the game to suit their own needs and the code can be used as an

example of programming. One target audience is the instructors and students in an outreach
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program, P4Games.org, for local Denver high schools. The P4Games curriculum uses

games and art in order to increase interest in STEM disciplines and in attending college.

The curriculum includes programming in Java using Greenfoot [28].

One method for teaching a particular notation (such as the syntax for Java) would be to

start with english descriptions of the expressions and slowly introduce the symbols for the

desired notation. This approach carries some risk because the student must play longer. If

the game is not interesting this may not happen. It also requires a starting notation known

to the student. A natural language such as english might not be ideal because it is often

ambiguous but starting with something familiar to students outweighs this disadvantage.

4.4 Research Questions

We hypothesize that a simple video game can be an effective method for teaching boolean

operations. In particular, we will test the following hypotheses:

• Playing Donut Drop will positively affect student knowledge of the AND operation.

• Playing Donut Drop will positively affect student knowledge of the NOT operation.

• Playing Donut Drop will positively affect student knowledge of the OR operation.

• Playing Donut Drop will improve knowledge of the Java representation of AND,

NOT, and OR operations.
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4.5 Methods

Two different groups of students participated in the assessment of the game. The first

group consisted of thirty eight first year college students. The second group consisted of

sixty high school students. Students volunteered to complete a pre-survey. The students

then played the game for approximately 30 minutes. After playing, the students completed

another survey identical to the pre-survey.

For the college students, the survey contained questions about the following areas: gen-

eral questions about boolean variables, Java notational questions, and questions concerning

the values of simple boolean expressions. The possible responses for the general questions

and the Java notational questions were “true”, “false”, and “I Don’t Know”. The possible

responses for the last group of questions were “One must be true”, “One must be false”,

“Each must be true”, “Each must be false”, and “I Don’t Know”. All of the questions are

shown in Section 4.6.

For the high school students, the survey consisted of a series of matching questions.

The questions consisted of a simple boolean expression and a set of colored symbols. The

students were asked to choose the symbols which satisfied the boolean expression. The

matching questions were based on the study by Pane and our repetition of that study [130].

Some additional matching questions were added. The matching questions were followed

by six additional questions to determine if the students could determine what conditions

were necessary to make a simple boolean expression evaluate to true or false. The simple

boolean expressions were:

• not X
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• X or Y or Z

• X and Y and Z

In both studies, each response was classified as being “I Don’t Know”, incorrect, or

correct. The tables of results show the number of responses in each of these categories

for the pre-survey and the post-survey. The sums of the rows show the results for the pre-

survey; the sums of the columns show the results for the post-survey. The tables also make

it possible to determine how many participants in each category changed their responses

from the pre-survey to the post-survey. For example in Table 4.5, four participants changed

from incorrect on the pre-survey to the correct response on the post-survey. All of the

questions are shown in Section 4.7.

The results from these two studies are described in the following sections. We denote

the two different studies as the “College Study” and the “High School Study”.

4.6 The College Study

Thirty eight college students volunteered to participate in the study. The participants were

all students in the first quarter of a CS1 course. This study took place near the middle of

the course so the students had already been exposed to boolean expressions and conditional

statements. The participants completed a pre-survey and a post-survey which contained

the same twenty-three questions. One person did not complete the post-survey and their

responses were not included in the results.
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4.6.1 Results

The first two survey questions concern the purpose of an If statement in a program and what

values a boolean variable can hold. These first two questions were followed by a series of

questions concerning Java syntax for the NOT, OR, and AND operations. The first eleven

questions were:

1. If Statements Allow A Program To Make Decisions Based On Current Conditions

2. A Boolean Variable Can Only Store The Values Of True Or False

3. ! Represents NOT

4. ! Represents OR

5. ! Represents AND

6. || Represents NOT

7. || Represents OR

8. || Represents AND

9. && Represents NOT

10. && Represents OR

11. && Represents AND

For nearly every one of these first eleven questions most of the participants answered

correctly on the pre-survey (only one or two participants answered incorrectly). For the one
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or two participants that did not answer correctly on the pre-survey most of them answered

correctly on the post-survey. At most, one participant answered incorrectly answers on the

post-survey (although for the first question there was one incorrect answer and one answer

of “I Don’t Know”).

The remaining twelve survey questions ask the participant to determine the conditions

which make a given boolean expression true or false. These questions were:

1. If !X Is True Then X Must Be False

2. If !X Is True Then X Must Be True

3. If !X Is False Then X Must Be False

4. If !X Is False Then X Must Be True

5. If X || Y || Z Is True Then Each of X,Y, Z Must Be True

6. If X || Y || Z Is True Then Any of X,Y, Z Must Be True

7. If X || Y || Z Is False Then Each of X,Y, Z Must Be False

8. If X || Y || Z Is False Then Any of X,Y, Z Must Be False

9. If X && Y && Z Is True Then Each of X,Y, Z Must Be True

10. If X && Y && Z Is True Then Any of X,Y, Z Must Be True

11. If X && Y && Z Is False Then Each of X,Y, Z Must Be False

12. If X && Y && Z Is False Then Any of X,Y, Z Must Be False

63



www.manaraa.com

The possible responses for these questions were “I Don’t Know”, “True”, or “False”.

We present the results in Tables 4.1 through 4.12.

Table 4.1: Question: “If !X Is True Then X Must Be False”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 1
Incorrect 0 0 1
Correct 0 0 35

Table 4.2: Question: “If !X Is True Then X Must Be True”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 1
Incorrect 0 0 1
Correct 0 0 35

Table 4.3: Question: “If !X Is False Then X Must Be False”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 1
Incorrect 0 2 2
Correct 0 2 30

4.6.2 Analysis of College Study

The collected responses from all questions for the pre-survey and post-survey were an-

alyzed using both Fisher’s Exact test and a paired t-test [62]. Results were considered

significant if p < 0.05.
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Table 4.4: Question: “If !X Is False Then X Must Be True”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 1
Incorrect 0 1 3
Correct 0 2 30

Table 4.5: Question: “If X || Y || Z Is True Then Each Of X,Y, Z Must Be True”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 0
Incorrect 0 2 4
Correct 0 1 30

4.6.2.1 Basic Understanding and Java Notation

The first eleven survey questions concern basic understanding of conditional statements and

the Java notation for boolean operators. Nearly all of the students answered these questions

correctly on the pre-survey. In the few cases where one or two incorrect responses were

present on the pre-survey, most of the incorrect responses were changed on the post-survey.

There were no negative effects for any of questions. Since the students were in the second

quarter of CS1 it is not surprising that they answered these questions correctly. The students

learn about conditional statements and the Java notation for the basic boolean operators in

the first quarter.

4.6.2.2 NOT operator

The remaining questions concern knowledge of the operators themselves. The first set of

four questions are concerned with the NOT operator. The students were asked questions
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Table 4.6: Question: “If X || Y || Z Is True Then Any Of X,Y, Z Must Be True”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 0
Incorrect 0 1 3
Correct 0 0 33

Table 4.7: Question: “If X || Y || Z Is False Then Each Of X,Y, Z Must Be False”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 0
Incorrect 0 19 2
Correct 0 4 12

of the form: “If Not X is <expression-value> then X must be <result-value>” where

<expression-value> and <result-value> are either “true” or “false”. Each of the four

questions is one of the possible combination of those values. For the first two questions

the results (shown in tables 4.1 and 4.2) are identical: two students improved and answered

correctly on the post-survey. All other students answered correctly on the pre-survey. This

represents an improvement of 5.4%. This change is not statistically significant when ana-

lyzed using Fisher’s Exact test (p = 1) or a paired t-test (p = 0.1061).

The results for the next two questions are shown in table 4.3 and table 4.4. For the first

of these, three students improved. For the second question, four students improved. In both

cases two students changed from correct on the pre-survey to incorrect on the post-survey.

These changes are not statistically significant under either statistical test.

The game appears to have had a slight positive effect for the first two questions and

little overall effect for the last two questions. We hypothesize that this is because the game
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Table 4.8: Question: “If X || Y || Z Is False Then Any Of X,Y, Z Must Be False”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 0
Incorrect 0 21 3
Correct 0 3 10

Table 4.9: Question: “If X && Y && Z Is True Then Each Of X,Y, Z Must Be True”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 1
Incorrect 0 2 1
Correct 0 1 32

emphasizes the conditions for satisfying an expression rather than what conditions should

be avoided. Since Homer’s shirt specifies which donuts he desires, the player examines

each donut to determine if it matches rather than which donuts fail to match. In other

words, the player learns how to fulfill a criteria expression and not how to make the criteria

expression fail. From this we conjecture that the game should be modified to account for

this. One possibility would be to add objects or donuts which Homer must explicitly avoid

in order to score points. Another possibility would be to specify criteria which only contain

negations.

4.6.2.3 OR Operator

The next four questions concern the “OR” boolean operator. Again the first two questions

had nearly identical results. For the first question, four students improved and one student

did worse. For the second question, three students improved and no students did worse.
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Table 4.10: Question: “If X && Y && Z Is True Then Any Of X,Y, Z Must Be True”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 0 1
Incorrect 0 3 3
Correct 0 1 29

Table 4.11: Question: “If X && Y && Z Is False Then Each Of X,Y, Z Must Be False”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 1 0
Incorrect 0 23 2
Correct 0 2 9

These results are shown in tables 4.5 and 4.6. The three students who improved repre-

sent just over 8% of the participant population. These improvements are not statistically

significant under either test however.

The results from the next two questions show that the students have difficulty in deter-

mining what will make a disjunction false. Nineteen students answered the first question

incorrectly on both the pre-survey and the post-survey. Two students improved and four

students did worse. For the second question, twenty-one students answered incorrectly

on both surveys. The results are shown in tables 4.7 and 4.8. The results for both ques-

tions are statistically significant when analyzed using Fisher’s Exact test (p = 0.00008,

and p = 0.00016 respectively) but not when using a paired t-test (p = 0.427 and p = 1

respectively).
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Table 4.12: Question: “If X && Y && Z Is False Then Any Of X,Y, Z Must Be False”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 0 1 0
Incorrect 0 19 2
Correct 0 5 10

4.6.2.4 AND Operator

The next four questions concern the AND operator. As with the other operators, nearly all

of the students answered the first two questions correctly. The results are shown in tables

4.9 and 4.10. A small number of students improved in each case. Two students improved

on the first question and four improved on the second question. For each question one

student did worse on the post-survey than on the pre-survey.

The students did less well on the next two questions. For the first of these (shown

in table 4.11), twenty three students answered incorrectly on both surveys. Two students

improved and two students did worse. For the second question (shown in table 4.12),

nineteen students answered incorrectly on both surveys. Two students improved but five

did worse.

4.6.3 Discussion

Many of the questions on the College Study survey were too easy for the college students.

Most likely this is due to the fact that the game evaluation occurred late in the second

quarter of a CS1 course and the students had already been taught boolean expressions and

conditional statements. There were hardly any incorrect answers on the first two questions

69



www.manaraa.com

or on any of the notational questions. These easier questions did not yield any significant

results so it is impossible to tell if the game had any effect on knowledge of Java notation

and our fourth hypothesis cannot be confirmed.

The results for the later questions (concerning values of variables in boolean expres-

sions) were more useful. It is unclear why the negatively worded questions were answered

incorrectly by so many participants. The wording of the questions may have confused

many of the students. Although there was some minor improvements for two of these

questions they were not statistically significant. Because of this, none of our hypotheses

can be confirmed for the College Study.

It is interesting to note that more than half of the participants had difficulty determining

what is required to make a disjunction or conjunction false (as seen in tables 4.7, 4.8, 4.11,

and 4.12). Few participants had the same difficulty with the expressions involving simple

negations (as seen in tables 4.3 and 4.4). These two observations fit the mental model

theory of reasoning. In this theory, a mental model of a boolean expression only contains

those necessary elements which ultimately make the expression evaluate to “true”. It may

be more difficult to reason about what makes an expression “false” because, in part, it

seems to require more knowledge about the possible objects that exist in the “world” [105].

The game may have had little or no effect on these results because it does not explicitly

include such examples. Homer’s shirt specifies what donuts to catch, it never directly

specifies what not to catch. The students may also have been confused by the negative

wording of these questions. In either case, this warrants further study. New examples to

explicitly cover these cases should be included in any future educational games. Special
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care should be taken when teaching boolean operators to make sure that students understand

what makes an expression false.

4.7 The High School Study

Sixty students who attend a local high school volunteered to participate in the second study.

The students were all in courses supported by the P4Games project [28]. As in the College

Study, the students were given a pre-survey, played the game for approximately 30 minutes,

and then completed a post-survey. The game was modified to present questions using only

“english” notation. No Java notation was included because the students had only begun to

learn the Java language.

The questions on both surveys asked the participants to determine which of a set of

colored symbols satisfy the specified boolean expression. Each symbol is either a triangle,

circle, or square. Each symbol is also colored either red, blue, or green. The symbols used

were:

• red triangle

• red circle

• red square

• blue triangle

• blue circle

• blue square
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• green triangle

• green circle

• green square

4.7.1 Results

Table 4.13 shows the results of the first question, “Mark the objects that match blue”,

for all 60 participants. This question was included as a simple control to determine if

the participants were truly paying attention while completing the surveys. Responses of

participants who did not answer this question correctly (on either the pre-survey or the

post-survey or both) were removed from the remaining analysis. Twenty three responses

were removed for this reason, leaving a remainder of 37 responses.

Table 4.13: Question: “Mark the objects that match blue”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 10 2
Correct 11 37

The next question asked the participants to mark the symbols which match blue and

circle. This question has more than one possible interpretation. If “and” is interpreted to be

the AND operator, then only one symbol satisfies the expression: the blue circle. Under this

interpretation, more than half of the participants answered incorrectly on the pre-survey.

The results are even worse on the post-survey (only one person answered correctly). The

results for this first interpretation are shown in table 4.14. These results are statistically

significant using McNemar’s chi-squared test with a p-value of 0.0025.
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There is another interpretation. One could interpret “and” as a disjunction and match

all the blue symbols along with all of the symbols which are circles. The results for this

interpretation are shown in table 4.15. These results are statistically significant using Mc-

Nemar’s chi-squared test with a p-value 0.0036.

These two sets of responses indicate that our game is reinforcing the interpretation of

“and” as a disjunction. This is interesting since our game does not explicitly use “and” to

specify the types of donuts that Homer should catch.

Table 4.14: Question: “Mark the objects that match blue and circle”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 25 0
Correct 11 1

Table 4.15: Question: “Mark the objects that match blue and circle” Alternate Interpretation

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 9 15
Correct 2 11

Since the next question contains “or” we expect the participants to do better than on

questions which have “and” because our game explicitly represents OR and only implicitly

represents AND. In the game the criteria are specified as a conjunction of a sequence of

disjunctive phrases. The conjunction operators are not portrayed on Homer’s shirt. There

is little difference between the pre-survey and post-survey for this question however (this

is shown in table 4.16). These results are not statistically significant.
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Table 4.16: Question: “Mark the objects that match square or green”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 10 6
Correct 7 14

The next question asked the participants to choose the symbols that “match blue and

green”. If “and” is interpreted as the AND operator, none of the possible symbols should

satisfy the expression. None of the participants used this interpretation. The results are

shown in table 4.17.

Table 4.17: Question: “Mark the objects that match blue and green”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 37 0
Correct 0 0

Under the alternate interpretation of “and”, the expression is satisfied by all of the

blue symbols along with all of the green symbols. The results are quite different using

this interpretation and are shown in 4.18. These results are not statistically significant,

p=0.2888, but do show that the students consistently used this alternate interpretation.

Table 4.18: Question: “Mark the objects that match blue and green” Alternate Interpretation

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 1 2
Correct 6 28
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The next two questions test whether expressions that consist of two connected phrases

will be interpreted differently from an identical single phrase expression (i.e. will “match

red or circle” be interpreted differently from “match red or match circle”). We are in-

terested if “or” and “and” will be interpreted as they were in the previous single phrase

questions. We are particularly interested in whether participants will still interpret “and” as

a disjunction. The first question tests these hypotheses for “or”. The second question tests

these hypotheses for “and”. The results are shown in Tables 4.19 and 4.20. For the first of

these questions, the results are essentially the same as the results for the earlier question,

“Mark the objects that match square or green”, shown in Table 4.16. For the second of

these questions, the difference is interesting however. Students seem to be using the proper

interpretation of “and” rather than interpreting it as a disjunction. Playing the game did not

seem to affect these results however so the difference is in the wording of the questions.

Adding the word “match” before each conjunct seems to be the key.

Table 4.19: Question: “Mark the objects that match red or match circle”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 13 7
Correct 5 12

Table 4.20: Question: “Mark the objects that match blue and match circle”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 3 7
Correct 8 19
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The next two questions examine the participant’s understanding of precedence between

the NOT operator and the AND operator. Neither question uses parentheses so the partic-

ipant decides what is the order of precedence. The participant may also use the alternate

interpretation of “and”. It is interesting to note that few participants answered the first

question (shown in table 4.21) correctly assuming the standard interpretation of “and”. The

results are not much different when the alternate interpretation “and” is applied. This is

shown in Table 4.22. Our game had little effect on either of these sets of results.

Many more answered the second of these questions correctly under the standard in-

terpretation but not under the alternate interpretation as shown in Tables 4.23 and 4.24.

Neither of these sets of results are statistically significant so again our game appears to

have had little effect.

Table 4.21: Question: “Mark the objects that match not red and square”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 32 0
Correct 3 2

Table 4.22: Question: “Mark the objects that match not red and square” Alternate Interpretation

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 35 2
Correct 0 0

We next asked the participants a question involving the NOT operator along with the

OR operator. As in the previous two questions, no parentheses were used so the order

of operations not clear. Table 4.25 shows that only one participant answered correctly on
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Table 4.23: Question: “Mark the objects that match square and not red”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 5 7
Correct 11 14

Table 4.24: Question: “Mark the objects that match square and not red” Alternate Interpretation

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 34 2
Correct 1 0

the post-survey assuming the interpretation that NOT will be given higher precedence than

OR. Under the alternate interpretation, more students answered correctly as shown in Table

4.26. Once again neither set of results show a significant effect caused by our game.

Table 4.25: Question: “Mark the objects that match not triangle or green”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 36 1
Correct 0 0

The next question included parentheses in the boolean expression. The results are

shown in Table 4.27. Again, nearly all of the participants answered incorrectly under the

assumption that “and” would be interpreted as the AND operator. We show the results for

the alternate interpretation where “and” is the OR operator in Table 4.28. More participants

answered correctly but our game caused no improvement and the results are not statistically

significant (p=0.1489 using McNemar’s chi-squared test).
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Table 4.26: Question: “Mark the objects that match not triangle or green” Alternate Interpretation

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 6 3
Correct 8 20

Table 4.27: Question: “Mark the objects that match not (triangle and red)”

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 36 0
Correct 0 1

The remaining six questions ask the participants to specify the conditions under which

a simple expression involving variables evaluates to true or false. The game had little or no

effect for the two questions involving the NOT operator (shown in tables 4.29 and 4.30).

For both questions approximately half the participants answered correctly.

There was some improvement for the next question. Five additional participants an-

swered correctly on the post-survey (shown in table 4.32). This improvement is not statis-

tically significant (p=0.1306). It is interesting that this question is one of the four that was

difficult for many of the participants in the previously described College Study.

The results are similar for the question shown in Table 4.33. Six people improved

and answered correctly on the post-survey. These results are not statistically significant (p

=0.0771).

There was no significant change for the last question. These results are shown in Ta-

ble 4.34. As can be seen in the table, five participants changed from a correct response

78



www.manaraa.com

Table 4.28: Question: “Mark the objects that match not (triangle and red)” Alternate Interpreta-
tion

Post-Survey
Pre-Survey Incorrect Correct
Incorrect 6 3
Correct 9 19

Table 4.29: Question: “If not X is true then X must be...”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 5 1 0
Incorrect 1 4 3
Correct 0 5 18

on the pre-survey to incorrect on the post-survey. These changes are not significant with

p=0.4497.

4.7.2 Analysis of High School Study

The collected responses from all questions for the pre-survey and post-survey were an-

alyzed using McNemar’s chi-squared test [62]. Results were considered significant if

p < 0.05. Only one of the questions showed a significant effect caused by our game.

This question, “Match the objects that match blue and circle” showed a statistically sig-

nificant negative effect when the results are interpreted using the AND operator. When

the question is interpreted using the OR operator for “and” then the game appears to have

had a positive effect. Some of the other results show minor improvements in the student

responses but none of these were statistically significant.
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Table 4.30: Question: “If not X is false then X must be...”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 4 2 1
Incorrect 1 7 3
Correct 1 2 16

Table 4.31: Question: “If X or Y or Z is true then...”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 3 1 0
Incorrect 3 16 5
Correct 0 5 4

4.7.3 Discussion

It appears that our game had little or no effect with the High School participants. In the

case where it did have an effect, it seems to reinforce the interpretation of “and” as the

OR operator. This is the opposite effect of what was intended. The game was intended to

improve the understanding of the mathematically defined boolean operators.

It is interesting to note that for the last two questions, there was some slight improve-

ment. One of these, “If X or Y or Z is false then...”, is a question that was incorrectly

answered by more than half of the participants in the College Study. This effect could be

random however.

There are a number of possibilities why our game had no effect in this study. First, the

students may not have had the inclination to pay attention to the survey questions or that

the questions were not understood. Some of the results of the first survey question, “Mark

the objects that match blue”, bear this out: one sixth of the students answered incorrectly
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Table 4.32: Question: “If X or Y or Z is false then...”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 3 1 1
Incorrect 1 16 5
Correct 0 1 9

Table 4.33: Question: “If X and Y and Z is true then...”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 3 0 1
Incorrect 1 9 6
Correct 0 1 16

on both surveys and another sixth switched to an incorrect answer on the post-survey. In

more than one case, a participant marked all of the objects which were not blue.

Second, our game does not allow the student to reflect on what is happening and the

playing time may have been too short. The students only played for one half hour. A study

which allows more playing time is warranted in order to test this possibility.

Third, it may be that the feedback provided by the game is not strong enough to be

effective. The game only notifies the player whether the donut satisfies the criteria or not.

The game may need to specifically portray why a donut does or does not meet the desired

criteria.

It may also be that information learned during game play does not transfer well to the

survey questions. Perhaps the surveys should be rewritten so that the questions are about

choosing donuts that satisfy a specified expression. This would serve to “narrow the gap”

between the game and the survey questions.

81



www.manaraa.com

Table 4.34: Question: “If X and Y and Z is false then...”

Post-Survey
Pre-Survey I Don’t Know Incorrect Correct

I Don’t Know 3 2 0
Incorrect 4 20 2
Correct 1 4 1

Another issue is that our game does allow the possibility of “false positives”. It may

not be possible for the avatar to reach every appropriate donut before it reaches the bottom

of the screen. In some cases the avatar may hit a donut which does not match the avatar’s

current donut criteria. In other words, the player may hit a donut unintentionally. This

presents a problem with the analysis: How can we tell if the player made a mistake because

of the game or because of a lack of understanding? Did the avatar hit a donut because the

player knows it is correct to do so or was it struck accidentally?

Finally it may be that the game is simply not engaging enough. The game uses a

well known cartoon character but the overall design of the game is somewhat monotonous.

There is no overarching goal and the levels are all essentially the same. We did notice that

competition seemed to play a role in engaging a number of the students however. Several

students insisted on playing the game again in order to improve their score and beat their

peers. Instructors also observed students playing the game several weeks after our surveys

were conducted.
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4.8 Summary

In the College Study, the game had little or no effect for most of the questions (in any case

most of the results were not statistically significant). The college students had the most

difficulty with the negatively worded questions. More than half of the participants could

not correctly determine the conditions under which a conjunction evaluates to false. Similar

results were observed for simple disjunctions.

The lack of effect in the College Study may have occurred because the students already

knew the answers to the questions on the survey. The students were in the second quarter

of a introductory computer science sequence (CS1). In the previous quarter, the students

were taught the concept of conditional statements and shown the simple boolean operators.

Because of this, the survey questions may have been too simple for these students.

It is interesting to note the difficulty the college students had with the negatively worded

questions. It would be interesting to investigate whether this is caused by the questions

themselves (i.e. if they were reworded would the students have done better?) or is it caused

by a misconception as to what makes a disjunctive or conjunctive expression false?

In the High School Study, the game also had little effect. The one exception is the effect

on the results of the second question. For this question, the game appears to reinforce the

interpretation of “and” as the disjunction operation. This was not the intended effect of the

game. There were some minor improvements for other questions but none were statistically

significant.
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Chapter 5

A Game For Teaching Concepts Of

Recursion

5.1 Introduction

We present a simple video game which acts as an effective visualization of recursion. We

then show the results of using this game-based approach to augment the traditional lecture

learning of recursion. We report the effect on student attitude and knowledge of recursion

when the game is used in a CS1 course. Our results show a significant improvement in

attitudes towards recursion and a modest improvement in recursion principle knowledge.

5.2 Recursive Breakout

Our game is a modification of the well-known video game Breakout (also known as Bricks).

In Breakout, the player controls a simple paddle near the bottom of the play field to hit a
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ball toward a group of blocks near the top. If the ball hits a block, then block is removed

from the play field. When all blocks are removed a new level is started, with a new set of

blocks, and game play continues. After striking a block or the top, left, or right boundary,

the ball bounces and changes direction in an appropriate manner. If the ball moves past the

paddle at the bottom then the ball is lost and the number of remaining balls is deducted by

one. The player can prevent this by hitting the ball with the paddle. When the number of

remaining balls reaches zero the game ends.

There are many variations of the basic Breakout game. The variations usually involve

different types of blocks. For instance, there may be blocks which must be hit by the ball

multiple times before they are destroyed or cause the ball to change velocity. Other varia-

tions allow the possibility of multiple balls on the screen or for the paddle to temporarily

catch the ball and release it from another position on the play field.

In our game, there are two types of blocks: normal and recursive. Normal blocks behave

as in the original game (when a normal block is hit by the ball, points are scored, the block

disappears, and the ball motion is altered). Whenever a recursive block is hit by the ball, the

current game level is immediately suspended and a new (recursive) level is created. This

level creation is shown visually as an animation where the new game level grows outward

from the recursive block until it reaches its full size. The new level has its own set of

blocks, a paddle, and a ball. The new recursive level is played until either all game lives

are lost (ending the game completely) or the level is completed. If the recursive level is

completed then the previous game level is resumed at the point at which it was suspended.

The new recursive game level is created so that it contains fewer recursive blocks than the

level it was created from thus ensuring that the recursion would terminate. Note that this is
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Figure 5.1: Recursion Game Initial Screen

not a requirement: It only matters that eventually a level is created which has no recursive

blocks. To aid the instructional purpose we have included the ability to pause the game,

restart the game, and adjust the ball speed. The initial game screen is shown in Figure 5.1.

All game levels are visible to the player as a superimposed stack of levels. Two ex-

amples are shown in Figures 5.2 and 5.3. In Figure 5.2 two levels of recursion are shown.

Figure 5.3 depicts three levels of recursion. In these figures, the recursive bricks are colored

white and the normal bricks are colored black. The upper most paddle is currently active.

The others are the paddles for the previously suspended and unfinished levels.

In summary, the game is a visual metaphor for the execution of a recursive procedure.

The game levels represent the current and past execution environments of an executing

recursive procedure. Recursive blocks represent the potential of a recursive procedure call.
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Figure 5.2: Recursion Game showing two levels of recursion

Figure 5.3: Recursion Game showing three levels of recursion
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5.3 Game Design and Implementation

Our main design goal was to create a video game that serves as a visualization of recursion

while at the same time being fun and engaging. The game should serve both students

and instructors (i.e. instructors should be able to use the game as part of a course lecture

on recursion). Further, the game should portray the current function invocation and all

parent function invocations. This portrayal should include representation of the current

executing environment, and both suspension and resumption of execution of an executing

environment. A secondary design goal was simplicity of play so that the student does not

need to concentrate much on game-play, but rather is able to focus on what is happening in

the game as pertains to recursion. Another secondary goal was that the code of the game

itself would be simple and understandable by students.

5.4 Research Questions

Our main hypothesis is that a simple video game based on the game of Breakout will in-

crease understanding of and create more positive attitudes toward the concept of Recursion.

These include whether or not recursion is believed to be complex or is difficult to under-

stand. We also consider student confidence of their overall understanding, of how recursive

functions are called, and the concept of base cases. Specifically we will test the following

hypotheses:

• Playing Recursive Breakout will positively affect student beliefs about their level of

understanding of recursion.
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• Playing Recursive Breakout will positively affect student beliefs about the complex-

ity and difficulty of recursion.

• Playing Recursive Breakout will improve general student knowledge of recursive

functions.

• Playing Recursive Breakout will improve student knowledge of the purpose and

structure of recursive functions (divide, conquer, and glue).

• Playing Recursive Breakout will improve student knowledge of the relationship be-

tween recursive functions and other functions (whether they must return a value and

whether they can call other functions).

• Playing Recursive Breakout will improve student knowledge of base cases (including

how many are required).

• Playing Recursive Breakout will improve student knowledge of termination require-

ments for recursive functions.

We wish to determine if the interaction with the game will provide the engagement

necessary to make the visualization effective as a learning tool. This allows us to determine

if the game does in fact meet the conditions described by Hundhausen [100] and Naps [127]

as discussed in Section 3.2.

Our work aims to address the following two main questions:

• Will playing our proposed recursion video game, combined with a lecture about the

game, change the participant’s attitudes toward recursion in a positive manner; and

89



www.manaraa.com

• Will it also improve the level of the participant’s recursion knowledge.

In addition, we also wish to determine the participant’s attitude toward the game itself.

5.5 Methods

We assessed learning efficacy by recruiting students to play the game and complete pre- and

post-surveys. Our surveys measure changes in both attitude and knowledge. Twenty three

students volunteered to participate in the survey. Two participants did not complete the post

survey. One participant completed the post survey but did not complete the pre-survey. The

data from these three participants was not included in the analysis.

The students were in the third quarter of a college introductory computer science course

sequence (CS1). All had been exposed to recursion in the previous quarter, but many

appeared to continue to have a weak understanding of recursion.

The surveys consisted of three parts: demographic information, student attitude, and

knowledge questions. The demographic information consists of name (for identification

purposes only), age, type of degree (Bachelor of Science or Arts), and intended Major of

study.

Attitude information was collected to determine if playing the game changed beliefs

and attitudes about recursion. Responses for these questions consisted of a five value Lik-

ert scale and the responses ranged from strongly disagree to strongly agree. Some of the

questions investigate beliefs about confidence and understanding while others consider be-

liefs about recursion itself (e.g. Does the participant believe that recursion is complex or

difficult to understand?). The first group of questions concerns the participant directly and
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specifically. The second group is somewhat more independent of the participant. Three

additional attitude questions were included in the post-survey to determine attitude toward

the game itself. These questions asked if the students thought playing the game was help-

ful for understanding recursion, if they thought the game was fun to play, and if the game

should be used in future courses.

The knowledge section consisted of a series of definitional and descriptive questions

concerning basic concepts of recursion. The questions can be divided into several groups:

those concerning base cases, those concerning the overall execution of a recursive function,

and those regarding other properties of a recursive function. For the first group, the ques-

tions concerned the role, number, and necessity of base cases. The second group included

questions regarding the aspects of the divide, conquer, and glue structure of recursive func-

tions. The last group includes questions about calling other functions and returning values.

The possible responses were “True”, “False”, or “I don’t know”.

The students were given the initial survey and then played the Recursive Breakout game

for approximately 30 minutes. Following game-play students participated in a discussion

of the purpose of the game and how it was connected to recursion. Afterward the students

completed the post-survey.

The discussion was included in order to connect elements of the game with the various

concepts of recursion. The discussion included the names of the various concepts (e.g. base

cases) and how the game represents those concepts (e.g. game levels without recursive

bricks). Presenting these connections was necessary because the game does not include

or present the names of the different concepts of recursion. The students were also asked

to consider whether the game would eventually end and how that could be determined.
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The discussion also included a recursive description of the structure of a binary tree and a

recursive algorithm to traverse a binary tree.

5.6 Results

5.6.1 Data for Attitude Questions

We first examine the data resulting from the six attitude questions. The data from each

question are presented in Tables 5.1 through 5.6. The rows represent responses on the pre-

survey. The columns represent the responses on the post-survey. From the table it is pos-

sible to determine how many participants changed their responses for each of the possible

responses. For example, in Table 5.1, the second row shows that 2 participants responses’

were “Disagree” on the pre-survey and of those one participant responded “Strongly Dis-

agree” and one responded “Neutral” on the post-survey.

If the question is worded in a “positive” manner then the responses which appear above

the the main diagonal of the table are from those participants who agree more strongly on

the post-survey than on the pre-survey. These entries indicate a positive effect on that par-

ticipant. Responses below the main diagonal of the table represent a negative effect. For

“negatively” worded questions, the entries above the main diagonal represent a negative

effect and the entries below the main diagonal represent a positive effect. This is the oppo-

site of “positively” worded questions. For either type of wording, entries which are on the

main diagonal of the table represent participants that did not change their responses from

the pre-survey to the post-survey.
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The first two questions were designed to determine whether the participants believe

recursion is complex and difficult to understand. The results are shown in table 5.1 and

table 5.2. For the question “Recursion is Complex”, 3 participants increased their responses

by one level toward the “Strongly Agree” end of the scale. Six participants did not change

their responses (4 remained at “Neutral” and 2 at “Agree”). The remaining 11 participants

decreased their responses by at least one level toward the “Strongly Disagree” end of the

scale. It is interesting that only 2 participants “Strongly Disagree” that recursion is complex

on the post-survey. This is only 10% of the participant population.

Table 5.1: Results of question: “Recursion Is Complex”

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Strongly Disagree 0 0 0 0 0

Disagree 1 0 1 0 0
Neutral 0 1 4 1 0
Agree 1 2 0 2 1

Strongly Agree 0 0 2 4 0

For the question “Recursion is Difficult To Understand”, 2 participants increased their

responses toward the “Strongly Agree” end of the scale. One participant increased by 2

levels (from “Disagree” to “Agree”) and the other by one level (from “Neutral” to “Agree”).

Seven participants did not change their responses. The other 12 participants decreased their

responses by at least one level toward the “Strongly Disagree” end of the scale. Of these

12, two participants changed by more than one level. As in the previous question, only 2

participants “Strongly Disagree” that recursion is difficult to understand on the post-survey.
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Table 5.2: Results of question: “Recursion Is Difficult To Understand”

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Strongly Disagree 0 0 0 0 0

Disagree 1 2 0 1 0
Neutral 0 4 1 1 0
Agree 1 1 2 4 0

Strongly Agree 0 0 2 0 0

One possible conclusion to draw from these two tables is that the participants believe

that recursion is complex and difficult to understand, but after playing the game and dis-

cussing it they felt that recursion is less complex and difficult to understand than before the

experience.

We now examine the results from the question “I Understand the Concept of Recur-

sion” shown in table 5.3. One participant changed from “Strongly Agree” to “Agree”.

Eight participants did not change their responses. The remaining 11 participants increased

their responses toward the “Strongly Agree” end of the scale. It is interesting to note that

all participants responded “Agree” or “Strongly Agree” on the post-survey (exactly split

between the two levels).

One possible conclusion is that before the game most participants believed they under-

stand recursion, but after the game all believed they understand recursion and in general

felt more confident in their understanding.

The results of the question “I Know What a Recursive Function Is” are shown in table

5.4. The results are very similar to the results of the previous question. Half of the partic-

ipants did not change their responses (of these ten, 5 responded “Agree” and 5 responded
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Table 5.3: Results of question: “I Understand the Concept of Recursion”

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Strongly Disagree 0 0 0 0 0

Disagree 0 0 0 3 0
Neutral 0 0 0 1 1
Agree 0 0 0 5 6

Strongly Agree 0 0 0 1 3

“Strongly Agree”). The other half increased their responses by at least one level. Note

that the 3 participants who responded “Disagree” on the pre-survey all moved to “Agree”

or “Strongly Agree”.These responses further support the conclusion that after playing the

game participants believe that they had a better understanding of recursion.

Table 5.4: Results of question: “I Know What A Recursive Function Is”

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Strongly Disagree 0 0 0 0 0

Disagree 0 0 0 2 1
Neutral 0 0 0 3 0
Agree 0 0 0 5 4

Strongly Agree 0 0 0 0 5

The results of the question “I Understand How Recursive Functions are Called” are

shown in table 5.5. These results are very similar to the results from the previous two

questions. One participant lowered their response from “Strongly Agree” to “Agree”. Eight

participants did not change their responses. The remaining 11 participants increased their

responses by at least one level. Again note the increases for the two participants who
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responded “Disagree” on the pre-survey. These responses further support the previous

conclusion. Based on the results, we conjecture that the game and lecture may be most

effective for the participants who have the least faith in their knowledge (i.e. those that

responded “Disagree” or “Strongly Disagree” on the pre-survey).

Table 5.5: Results of question: “I Understand How Recursive Functions Are Called”

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Strongly Disagree 0 0 0 0 0

Disagree 0 0 0 1 1
Neutral 0 0 0 3 1
Agree 0 0 0 6 5

Strongly Agree 0 0 0 1 2

The results of the last attitude question are shown in table 5.6. Twelve of the partic-

ipants did not change their response to the question “I Understand the Concept of Base

Cases”. Three participants lowered their responses (one from “Agree” to “Disagree” and

two from “Strongly Agree” to “Agree”). The remaining five participants increased their

responses. Again the most striking improvements occur for the participants who responded

“Strongly Disagree” and “Disagree” on the pre-survey. Three out of four participants an-

swered “Agree” or “Strongly Agree” on the post-survey for this question. One possible

conclusion to draw is that the game does not sufficiently represent recursion base cases in

an explicit manner.
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Table 5.6: Results of question: “I Understand The Concept Of Base Cases”

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Strongly Disagree 0 0 0 1 0

Disagree 0 1 1 1 1
Neutral 0 0 2 1 0
Agree 0 1 0 4 0

Strongly Agree 0 0 0 2 5

5.6.2 Data for Post-Survey Attitude Questions

Three additional attitude questions were asked as part of the post-survey. The results from

these questions are shown in tables 5.7, 5.8, and 5.9. These questions asked whether the

participants believed that the game was helpful for understanding recursion, whether the

game was fun, and whether the game should be used in future courses.

Over half of the participants agreed that the game helped them understand recursion.

Eighteen participants thought that the game was fun to play and seventeen believed that

the game should be used in courses. It is possible that the participants believe the game

should be used in courses because rather do anything or play any game rather than to listen

to another boring lecture. When these results are considered in the context of the game as a

visualization of recursion, we surmize that they show that the students were engaged in the

visualization through game play. Analysis of the knowledge questions is required in order

to test this question.
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Table 5.7: Playing The Recursive Breakout Game Helped Me Understand Recursion

Post-Survey
Strongly Strongly
Disagree Disagree Neutral Agree Agree

Responses 2 2 3 10 3

Table 5.8: The Recursive Breakout Game Is Fun

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Responses 0 1 1 8 10

5.6.3 Data for Knowledge Questions

We present survey results for thirteen questions concerning recursion knowledge. Possible

responses were “True”, “False”, and “I Don’t Know”. In each of the following tables, the

correct response is listed first, the incorrect response is listed second, and “I Don’t Know”

is shown last. For several questions, some of the participants did not respond. Those

responses are included in the results when they occurred as an “I Don’t Know” response.

We present both results for each question in the following tables. The first row con-

tains entries for those who answered correctly on the pre-survey. The first entry in this

row represents those whose answer did not change. The remaining entries represent those

who changed to an incorrect or “I Don’t Know” answer on the post-survey which shows

a negative effect. The second row contains entries for those who answered incorrectly on

the pre-survey. The first column entry in this row represents participants who changed the

answer from incorrect in the pre-survey to correct in the post-survey which is a positive ef-

fect. The third entry represents a (possible) positive improvement as the participant is now
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Table 5.9: The Recursive Breakout Game Should Be Used In Courses To Teach Recursion

Post-Survey
Strongly Strongly

Pre-Survey Disagree Disagree Neutral Agree Agree
Responses 0 0 3 9 8

unsure of what the correct answer is and may now recognize that their pre-survey response

was incorrect. The first column entry in the third row represents participants who answered

“I Don’t Know” and answered correctly on the post-survey. As before any entries on the

main diagonal of the tables represents participants that did not change their response from

the pre-survey to the post-survey.

For the question, “A Recursive Function is a Function Which Calls Itself”, nearly

all participants (19 out of 20) responded with the correct answer (“True”) on the pre-

survey. The remaining participant who responded “I Don’t Know” changed their response

to “True” on the post-survey. This is shown in table 5.10.

Table 5.10: Question: “A Recursive Function Is A Function Which Calls Itself”

Post-Survey
Pre-Survey True False I Don’t Know

True 19 0 0
False 0 0 0

I Don’t Know 1 0 0

The next two questions are designed to determine if the participants understand the

divide, conquer, and glue characterization of recursive functions described by Turbak et.

al. in [158]. This characterization was discussed in the lecture which followed playing the

game. Fifteen out of twenty participants answered the first of these questions, “A Recursive
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Function Divides A Problem Into Simpler Problems”, correctly on the pre-survey and did

not change their response on the post-survey. Two changed from “True” to “False”. One

participant changed from “False” to “I Don’t Know”. Two changed from “I Don’t Know”

to “True”. In summary, two participants changed from correct to incorrect. Two others

changed from unsure to correct. One changed from incorrect to unsure.

Table 5.11: Results of question: “A Recursive Function Divides A Problem Into Simpler Problems”

Post-Survey
Pre-Survey True False I Don’t Know

True 15 2 0
False 0 0 1

I Don’t Know 2 0 0

For the second of the two questions, “A Recursive Functions Combines the Solutions

of Simpler Problems into the Solution of the Original Problem”, thirteen participants re-

sponded with the correct answer (“True”) on the pre-survey. One participant answered

incorrectly on the pre-survey and did not change their response on the post-survey. Five

out of six who responded “I Don’t Know” on the pre-survey changed to the correct answer

on the post-survey while the sixth again responded “I Don’t Know”.

Table 5.12: Results of question: “A Recursive Function Combines The Solutions Of Simpler Prob-
lems Into The Solution Of The Original Problem”

Post-Survey
Pre-Survey True False I Don’t Know

True 13 0 0
False 0 1 0

I Don’t Know 5 0 1
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It would appear that the game had little effect on the knowledge of the concept of prob-

lem division (knowledge of the “Divide” concept) but did affect the knowledge concerning

the concept of combining solutions of subproblems into the larger solution (the “Glue”

concept).

The next question, “A Recursive Function Cannot Call Other Functions”, is designed

to determine if the participants understand that recursive functions are not “special” and

they can invoke other functions including other recursive functions. The results are shown

in table 5.13. For this question it appears that the game may have had a negative effect.

Four participants who answered correctly on the pre-survey changed their answers. Three

changed their answer to “True” and one changed to “I Don’t Know”. On the other hand,

three participants changed from “I Don’t Know” to the correct answer on the post-survey.

Table 5.13: Question: “A Recursive Function Cannot Call Other Functions”

Post-Survey
Pre-Survey False True I Don’t Know

False 13 3 1
True 0 0 0

I Don’t Know 3 0 0

The next question investigates whether participants believe that recursive functions

must return a value. While only 12 participants answered correctly on the post-survey

this represents an improvement over the 7 participants who answered correctly on the pre-

survey.

The next seven questions concern the concept of base cases and their role in recursion.

Five participants answered the first of these, “A Recursive Function Must Have Exactly

One Base Case”, correctly on the pre-survey. Only 8 participants responded correctly on
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Table 5.14: Results of question: “A Recursive Function Must Return A Value”

Post-Survey
Pre-Survey False True I Don’t Know

False 6 1 0
True 4 6 0

I Don’t Know 2 1 0

the post-survey. It is also interesting that on the post-survey, 8 participants responded “I

Don’t Know” and 5 answered incorrectly. This appears to indicate once again that the game

does not portray base cases in an effective manner.

Table 5.15: Results of question: “A Recursive Function Must Have Exactly One Base Case”

Post-Survey
Pre-Survey False True I Don’t Know

False 5 0 1
True 2 2 2

I Don’t Know 1 3 4

Eighteen participants answered the next question, “A Recursive Function Must Have At

Least One Base Case”, correctly on the post-survey. Sixteen correctly answered “True” on

the pre-survey, and of these one changed their answer to “I Don’t Know” on the post-survey.

One participant changed their incorrect answer of False to True. Two participants changed

from “I Don’t Know” to the correct answer, and one participant responded “I Don’t Know”

in both the pre-survey and post-survey. Far fewer people answered the previous question

correctly.

Eight participants answered the next question, “A Recursive Function Must Have At

Least One Base Case”, correctly on the post-survey. Seven correctly answered “False”

on the pre-survey, and of these one changed their answer to “I Don’t Know” on the post-
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Table 5.16: Results of question: “A Recursive Function Must Have At Least One Base Case”

Post-Survey
Pre-Survey True False I Don’t Know

True 15 0 1
False 1 0 0

I Don’t Know 2 0 1

survey. One participant changed their incorrect answer of “True” to the correct answer of

“False”. One participant changed from “I Don’t Know” to the correct answer, and four

participants changed from “I Don’t Know” to the incorrect answer on the post-survey.

Table 5.17: Results of question: “A Recursive Function Cannot Have More Than One Base Case”

Post-Survey
Pre-Survey False True I Don’t Know

False 6 0 1
True 1 2 0

I Don’t Know 1 4 5

Results for the third question, “A Base Case is a Subproblem with a Recursive Solu-

tion”, are shown in table 5.19. Fourteen responded correctly on the post-survey. Only 4

participants responded incorrectly on the post-survey. Seven answered incorrectly and 7

responded “I Don’t Know” on the pre-survey. Three participants who answered correctly

on the pre-survey changed their answer on the post-survey however.

The last question concerning base cases, “A Recursive Function With Base Cases Will

Always Finish”, was answered correctly by seven participants on the post-survey. Seven

answered incorrectly on the post-survey. Nine participants answered correctly on the pre-

survey.
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Table 5.18: Results of question: “A Base Case Is A Subproblem With A Non-Recursive Solution”

Post-Survey
Pre-Survey True False I Don’t Know

True 9 0 1
False 2 1 0

I Don’t Know 2 2 3

Table 5.19: Results of question: “A Base Case Is A Subproblem With A Recursive Solution”

Post-Survey
Pre-Survey False True I Don’t Know

False 8 2 1
True 3 1 3

I Don’t Know 3 1 3

Sixteen of the participants answered the next question correctly on the post-survey.

More students answered this question correctly than the previous question.

These results seem to indicate that students do not completely understand the role of

base cases. Many students seem to believe that base cases guarantee termination of a

recursive function.

The last three questions have no connection to the Recursive Breakout Game. The

first of these questions concerned converting loops to equivalent recursive functions. This

was discussed during the lesson regarding recursion. Fourteen of the participants answered

this question correctly on the post-survey which is a modest improvement. The last two

questions were included because binary trees were also discussed during the lesson about

recursion. Every participant answered both binary tree questions correctly on the post-

survey.
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Table 5.20: Results of question: “A Recursive Function With Base Cases Will Always Finish”

Post-Survey
Pre-Survey False True I Don’t Know

False 6 1 2
True 0 4 1

I Don’t Know 1 2 3

Table 5.21: Results of question: “A Recursive Function Without A Base Case Will Never Finish”

Post-Survey
Pre-Survey True False I Don’t Know

True 11 0 1
False 1 0 0

I Don’t Know 4 0 3

5.7 Analysis

5.7.1 Analysis for Attitude Information Questions

A Wilcoxon signed rank test (with continuity correction) was performed on the results

for each of the attitude questions [42]. This test was chosen because it is appropriate for

discrete ordinal data such as Likert scale responses. The pre-survey and post-survey data

was loaded into the R statistical system. The p-value for each question is shown in the table

5.25. Since p<0.05 is considered statistically significant, the results for all of the attitude

questions except for “I Understand the Concept of Base Cases” are significant. Not all of

the individual effects are positive: for nearly all of the questions one or two responses show

a negative effect. Except for the last question, the number of positive changes is much

greater than the number of negative effects.
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Table 5.22: Results of question: “Any For Loop Can Be Rewritten As An Equivalent Recursive
Function”

Post-Survey
Pre-Survey True False I Don’t Know

True 11 0 2
False 1 1 1

I Don’t Know 2 0 2

Table 5.23: Results of question: “Binary Trees Can Be Searched Recursively”

Post-Survey
Pre-Survey True False I Don’t Know

True 19 0 0
False 0 0 0

I Don’t Know 1 0 0

5.7.2 Analysis for Knowledge Questions

A Fisher’s Exact Test, as described in the following section, for 3 by 3 contingency tables

was performed on the responses to the knowledge questions. This test can easily be per-

formed for contingency tables of modest sizes using the R System [62]. The p-value for

each question is shown in Table 5.26.

The results for four of the questions are statistically significant (p < 0.05). The first

of these, “A Recursive Function Combines The Solutions of Simpler Problems Into The

Solution Of The Original Problem”, is concerned with the overall purpose of a recursive

function. The improvement is clear: 5 participants who were unsure during the pre-test

answered correctly on the post-test. Because the overall number of participants is small

this represents an improvement by 25% of the study participants.
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Table 5.24: Results of question: “Binary Trees Can Be Defined Recursively”

Post-Survey
Pre-Survey True False I Don’t Know

True 12 0 0
False 2 0 0

I Don’t Know 6 0 0

Table 5.25: Analysis of Attitude Questions

Question p-value
I Understand the Concept of Recursion 0.0056
I Know What A Recursive Function Is 0.0042
Recursion is Difficult to Understand 0.0308

I Understand How Recursive Functions Are Called 0.0058
Recursion is Complex 0.0164

I Understand the Concept of Base Cases 0.3198

The remaining questions concern the concept of base cases. One question, “A Base

Case Is A Subproblem With A Non Recursive Solution”, is included to test definitional

knowledge of base cases. We also asked the corresponding contrary question, “A Base

Case Is A Subproblem With A Recursive Solution”. The results for this contrary question

were not statistically significant.

The results for the next question, “A Recursive Function Cannot Have More Than One

Base Case”, show only a slight positive effect. There were seven correct responses on

the pre-test. One additional participant answered correctly on the post-test. The results

are statistically significant mostly because four people changed from “I Don’t Know” to

“True” (which is the incorrect response). This implies that the game appears to mislead

many participants who are unsure into believing that there cannot be more than one base

case for a recursive function.
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For the remaining question, “A Recursive Function With Base Cases Will Always Fin-

ish”, the results show a negative effect. Nine participants answered correctly on the pre-

test and seven answered correctly on the post-test. It is interesting to note that one-third

of those who responded correctly on the pre-test changed their responses on the post-test.

Additionally half of the people who responded “I Don’t Know” changed their answers on

the post-test. One changed to the correct answer and two changed to the incorrect answer.

It appears that the game caused participants who are unsure to change their responses and

that it also misled many to change from correct responses to incorrect responses.

Clearly the p-values for the remaining questions are greater than 0.05. None of these

results are considered statistically significant. Several of the data tables (in particular Tables

5.14 and 5.21) do show modest improvements however.

Table 5.26: p-values of Knowledge Questions

Question p-value
A Recursive Function Is A Function Which Calls Itself 1

A Recursive Function Cannot Call Other Functions 1
A Recursive Function Divides A Problem Into Simpler Problems 0.0854

A Recursive Function Combines The Solutions of Simpler Problems... 0.0316
A Recursive Function Must Have Exactly One Base Case 0.1244

A Base Case Is A Subproblem With A Non-Recursive Solution 0.0454
A Recursive Function Cannot Have More Than One Base Case 0.0070

A Base Case Is A Subproblem With A Recursive Solution 0.4789
A Recursive Function With Base Cases Will Always Finish 0.0434

A Recursive Function Must Return A Value 0.1860
Any For Loop Can Be Rewritten As An Equivalent Recursive Function 0.0850

A Recursive Function Without A Base Case Will Never Finish 0.1986
A Recursive Function Must Have At Least One Base Case 0.3684

Binary Trees Can Be Searched Recursively 1
Binary Trees Can Be Defined Recursively 1
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5.8 Discussion

One valid criticism is that because there was a discussion of recursion following game-

play it is not possible to determine whether the game itself is responsible for the changes

observed. An additional carefully designed study is warranted to determine if the game

by itself is effective. However it does not mean that the game is not useful for visualizing

recursion or as an instructional aid. The results of the attitude questions bear this out. The

majority of the students believed that the game should be used in the classroom.

It is also possible that players could play through the game successfully without nec-

essarily learning anything about the concepts of recursion. Success in the game does not

inherently require knowledge of recursion.

Another criticism is that the number of participants is rather small for sound statistical

analysis. This is why an exact test was chosen. Exact tests are valid even when the number

of participants is less than twenty. In spite of this, we believe further investigation with a

larger participant population is warranted.

Clearly the first two of our hypotheses were confirmed. The results for both of the

questions, “I Understand the Concept of Recursion” and “I Know What a Recursive Func-

tion Is” show positive and significant effects. Similarly, the students beliefs regarding the

complexity and difficulty show positive and significant effects. Students also show greater

confidence in knowing how recursive functions are called. These results indicate that even

a short period of student engagement can have positive effect on student confidence and

their beliefs about the complexity and difficulty of recursion.

The third hypothesis regarding improvement of general student knowledge of recursive

functions was not confirmed. Students did not show significant improvement because the
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majority answered the first survey question correctly on the pre-survey. One could argue

that improvements shown in the other knowledge questions also show general improve-

ment of knowledge but those other knowledge questions are covered by our remaining

hypotheses.

The divide, conquer, and glue hypothesis was confirmed for the last two portions.

Results for the question, “A Recursive Function Divides A Problem Into Simpler Prob-

lems” showed modest improvement which were not significant. The “conquer” part is

arguably covered by the results for the question, “A Base Case Is a Subproblem With A

Non-Recursive Solution”. That question showed significant positive improvement in stu-

dent knowledge. The “glue” question, “A Recursive Function Combines The Solutions of

Simpler Problems Into The Solution Of The Original Problem” shows similar significant

positive improvements. We believe that the game would be improved by a more explicit

representation of the problem division portion of the execution. The current version only

shows a model of the currently executing subproblem. Perhaps other subproblems at the

same “level” of execution should be shown waiting to be executed.

Our fifth hypothesis concerned whether recursive functions can call other functions

and whether they must return a value. This hypothesis was not confirmed. This is not a

surprise since neither “other” functions nor function return values are explicitly represented

in Recursive Breakout. We conjecture that adding individual non-recursive game levels

might provide a solution regarding the first part of the hypothesis. These new game levels

could be anything such as a level of Asteroids or a game of Solitaire. It is unclear how to

represent return values within the game.
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The sixth hypothesis concerns how many base cases are allowed or required. Partici-

pants were asked whether a recursive function must have at least one base case, whether

a recursive function must have exactly one base case, and whether a recursive function

cannot have more than one base case. Results were only statistically significant for the

last of these questions. This question shows a slight negative effect: four participants who

answered “I Don’t Know” on the pre-survey changed their answer to the incorrect response

on the post-survey. We believe that this may be caused by the fact that the game only

has one type of base case (i.e. all base case game levels are identical). This may mislead

participants into thinking that all recursive functions have only one base case. Perhaps the

addition of different types of recursive bricks and base case levels would correct this.

The final hypothesis, “Playing Recursive Breakout will improve student knowledge of

termination requirements for recursive functions”, was not confirmed. This hypothesis was

tested using two questions. The first question, “A Recursive Function With Base Cases

Will Always Finish”, had results which are statistically significant but the effect is unclear.

The second question, “A Recursive Function Without A Base Case Will Never Finish”,

had results which are not statistically significant yet five additional participants answered

correctly on the post-survey.

Of the attitude questions, “I Understand the Concept of Base Cases” is the only one

which did not show significant result effects. As stated earlier, this indicates that the game

does not represent base cases explicitly enough. This is clear from the results of the knowl-

edge questions related to base cases as well. Perhaps in future versions, the game levels

which represent base cases should be visually different so as to emphasize their place in

the overall recursion.
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5.9 Summary

We have shown that a simple game can significantly change student attitudes toward the

concept of recursion. The game also appears to improve understanding of some elemen-

tary concepts, but for many concepts (e.g. base cases) the improvement is not statistically

significant. It appears that students believe that they know more about recursion and are

more confident in their understanding but the measured improvement in actual knowledge

is less significant. The attitude of the participants toward recursion did change in a positive

manner. Positively changing student attitude toward a concept is a first step in improving

learning outcomes. We conjecture that the game had a positive effect both because of the

illustrative effect from the visualization, and, because the participants enjoyed playing the

game thus holding their attention longer and making them more receptive to learning.

The game should be considered an additional tool to assist in understanding recursion.

Our game is a significant first step toward future games which can effectively teach all of

the underlying concepts. One possible path for future work is to modify the game to better

represent base cases and the divide portion of the divide, conquer, glue characterization of

recursive functions.
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Chapter 6

Conclusion

6.1 Contribution of the Research

We have demonstrated that it is possible to develop simple video games which teach funda-

mental concepts of Computer Science. We created two video games: one to teach boolean

operators and one to teach the concept of recursion. To determine their effectiveness, we

performed several quasi-experiments (there were no control groups in these studies) involv-

ing college and high school students.

For the boolean operator game, both college and high school students participated in

our study. The students completed a pre-survey, played the game, and then completed a

post-survey. The survey questions were too easy for the college students making it difficult

to measure the effect of playing the game. For the High School Study, the game had only

one significant effect. Our game reinforced the interpretation that “and” means disjunction

which was not the intended effect of the game.
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For the recursion game, only college students participated in our study. In this study,

the students completed a pre-survey, played the game, participated in a short lecture, and

then completed a post-survey. Our game had significant positive impact on student attitudes

toward recursion. The game also had significant impact on student knowledge regarding

the definition of a base case, that base cases do not guarantee function termination, and

aspects of the divide, conquer, glue characterization of recursion. A majority of the students

thought the game was “fun” and that it should be used in future courses. Based on these

survey results, we have shown that our video game is effective at changing student attitudes

toward recursion. We also show that even a simple game can have a positive effect on

learning outcomes.

6.2 Implications of the Research

6.2.1 Implications for Computer Science Education

We believe this work is the first to present video games which teach Computer Science con-

cepts rather than computer programming. Both of these types of video games are important

new areas of research for Computer Science and Education. Video games should be used

as supplements to traditional teaching of both concepts and computer programming.

6.2.2 Implications for Algorithm Visualization

Naps et. al. [127] identified different levels of user engagement for algorithm visualization

systems. Playing a video game is not one of the engagement levels that were identified

but our game appears to be an effective visualization of a recursive algorithm. Where does
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“playing” belong in the characterization of user engagement? Is it equivalent to one of the

other levels or is it something new? Also, will algorithm visualizations be more prevalent

in classrooms if they are part of a game that can be “played”?

6.2.3 Implications for Future Research

Based on the success of the Recursive Breakout game, it would be worthwhile to try to

improve it both as a game and as a teaching tool. Possible improvements to the game

include the use of color, more types of bricks, and multi-ball play. To improve as a teaching

tool, the game should have a better representation of base cases.

One obvious area of research would be to design and build games which teach other

basic concepts such as iteration, functions, and variables. Games could also be created

for teaching concepts of object-oriented programming. We would also revisit the idea of a

game for teaching boolean operations.

Another area of research would be to design and build “playable visualizations” of

algorithms. This work would be informed by the existing work in algorithm visualization.

We envision games which are highly configurable so that instructors or the game itself

could provide levels and situations tailored to an individual student’s progress and learning

needs.

Finally, it would be interesting to design video games which can automatically and in-

herently determine if it is effectively assisting the student. This ability would avoid having

to conduct separate surveys and may also allow long term monitoring of student progress.
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6.3 Limitations of Study

The boolean game had little effect on the learning outcomes of the high school students.

Part of this may be due to student attitudes or that the interaction time with the game was

too short. Another study should be conducted.

The study of the boolean game with the college students was conducted more than half

way through a CS1 course. This was too late, as the students had already been exposed to

boolean expressions and conditional statements. The pre-survey questions were too easy

and quite a number of students correctly answered all of them. This made it difficult to

measure the effect of the game on student knowledge. Another study should be conducted

earlier in the course to see if the boolean game is effective with college level students.

The study of the recursion game had only 20 participants. All of the participants were

enrolled in a CS1 course. A larger study should be conducted to determine if the results

still hold for larger and more diverse populations.

6.4 Final Conclusion

In this dissertation, we have shown that video games can be designed to teach computer

science concepts. To our knowledge these are the first video games intended to teach Com-

puter Science concepts rather than computer programming. Even though our games only

had a positive effect for a small number of survey questions, these results are sufficiently

positive to call for more research in this and other related areas. Our work presented here

is only a small first step toward using video games to teach fundamental Computer Science

concepts.
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Appendix A

Exact Statistical Tests

Exact statistical tests were designed, in part, to calculate inferential statistics for small

populations of participants and were initially created for use with 2 by 2 contingency tables.

The specific test used to analyze our data was first described by R. A. Fisher in 1935. For

2 by 2 contingency tables, the exact distribution is based on “the marginal frequencies in

both margins.” [42]. The margins are the row and column sums. According to Agresti, if

we assume that these values are fixed, then the distribution is hypergeometric:

(
n1+

n11

)(
n2+

n+1−n11

)(
n

n+1

) (A.1)

Note that the distribution only depends on the value in first cell of the contingency table

(because we know the row and column sums, once we “choose” the value of the first cell

the remaining values in the table can be calculated). We are interested in determining if

the post-results are independent of the pre-results. The hypothesis and alternate hypothesis

are based on the value of the odds ratio. The hypothesis is that the results are independent
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(there is no association). The alternate hypothesis is that the results are associated in some

way. The odds ratio, θ, is defined (for 2 by 2 tables) as:

θ =
n11n22

n12n21

(A.2)

If the odds ratio, θ, is 1 and all cell values are greater than zero, then the post-results

are independent of the pre-values. If θ > 1 then the two sets of results are not independent

and larger values of θ “represent stronger levels of association” [42].

A table with a larger value in the first cell and the same row and column sums will

produce a larger odds ratio than that of the observed table. Any such table supports the

alternate hypothesis more than the observed table because it represents a set of results

which has a greater association between pre- and post-survey results. The p-value we are

interested in is the “hypergeometric probability that n11 is at least as large as the observed

value” [42]. We therefore examine this probability for each possible table with smaller

values of n11 and the same row and column sums. The p-value of the observed table is

calculated by summing the p-values for all of these tables. The reasoning and calculation

is similar for contingency tables with more columns and rows.
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Appendix B

Boolean Game College Study Survey

All personal information gathered is private. Other information will only be used by the

department and faculty after all personal information is removed (i.e. if information is used

it will be anonymous). This survey has no effect on your grade in this course.

General Information

Name:

Age:

Gender: Female Male

Class Rank: Freshman Sophomore Junior Senior

What type of degree? Bachelor Arts Bachelor Science Other

What is your Major?

What is your Minor?
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Boolean Knowledge

True False Don’t Know

A boolean variable can only store the values of true or false

If statements allow a program to make decisions based on current 
conditions

In Java, ! represents “not”

In Java, ! represents “or”

In Java, ! represents “and”

In Java, || represents “not”

In Java, || represents “or”

In Java, || represents “and”

In Java, && represents “not”

In Java, && represents “or”

In Java, && represents “and”

If ! X is true then X must be false

If ! X is true then X must be true

if ! X is false then X must be false

If ! X is false then X must be true

If X || Y || Z  is true, each of X, Y, Z must be true

If X || Y || Z is true, any of X, Y, Z must be true

If X || Y || Z is false, each of X, Y, Z must be false

If X || Y || Z is false, any of X, Y, Z must be false

If X && Y && Z is true, each of X, Y, Z must be true

If X && Y && Z is true, any of X, Y, Z must be true

If X && Y && Z is false, each of X, Y, Z must be false

If X && Y && Z is false, any of X, Y, Z must be false
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Appendix C

Boolean Game High School Study

Survey

All personal information gathered is private. Other information will only be used by the

department and faculty after all personal information is removed (i.e. if information is used

it will be anonymous). This survey has no effect on your grade in this course.

Name:

134



www.manaraa.com

Choose all the objects that match blue
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square

Choose all the objects that match blue and circle
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square       

Choose all the objects that match square or green
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square

       
Choose all the objects that match blue and green

• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square       
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Choose all the objects that match red or match circle
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square        

Choose all the objects that match blue and the objects that match circle
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square       

Choose all the objects that match red, if the objects match triangle
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square

Choose all the objects that match blue, unless the objects match square
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square
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Choose all the objects that match not red and square
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square       

Choose all the objects that match square and not red
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square   

Unless the objects match green, Choose all the objects that match circle
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square

Choose all the objects that match not (triangle or red)
• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square
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Choose all the objects that match (not circle) or blue

• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square

        
Choose all the objects that match not triangle or green

• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square

        
Choose all the objects that match not (triangle and red)

• Red Triangle
• Red Circle
• Red Square
• Blue Triangle
• Blue Circle
• Blue Square
• Green Triangle
• Green Circle
• Green Square
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If not X is true then X must be
• False
• True
• I don’t know

If not X is false then X must be
• False
• True
• I don’t know


If X or Y or Z is true then
• At least one of X, Y, Z must be false
• At least one of X, Y, Z must be true
• Each of X, Y, Z must be false
• Each of X, Y, Z must be true
• I don’t know

If X or Y or Z is false then
• At least one of X, Y, Z must be false
• At least one of X, Y, Z must be true
• Each of X, Y, Z must be false
• Each of X, Y, Z must be true
• I don’t know
 
If X and Y and Z is true then
• At least one of X, Y, Z must be false
• At least one of X, Y, Z must be true
• Each of X, Y, Z must be false
• Each of X, Y, Z must be true
• I don’t know

If X and Y and Z is false then
• At least one of X, Y, Z must be false
• At least one of X, Y, Z must be true
• Each of X, Y, Z must be false
• Each of X, Y, Z must be true
• I don’t know
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Appendix D

Recursion Game Pre-Survey

All personal information gathered is private. Other information will only be used by the

department and faculty after all personal information is removed (i.e. if information is used

it will be anonymous). This survey has no effect on your grade in this course.

General Information

Name:

Age:

Gender: Female Male

Class Rank: Freshman Sophomore Junior Senior

What type of degree? Bachelor Arts Bachelor Science Other

What is your major?
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Strongly 
Agree

Agree Neutral Disagree Strongly 
Disagree

I understand the concept of 
Recursion

I know what a Recursive 
Function is

Recursion is difficult to un-
derstand

I understand how Recursive 
Functions are called

Recursion is complex

I understand the concept of 
Base Cases
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Recursion Knowledge

True False Don’t Know

A Recursive function is a function which calls itself

A Recursive function cannot call other functions

A Recursive function divides a problem into simpler 
problems

A Recursive function combines the solutions of simpler 
problems into the solution of the initial problem

A Recursive function must have exactly one base case

A Base case is a subproblem with a non-recursive solu-
tion

A Recursive function cannot have more than one base 
case

A Base case is a subproblem with a recursive solution

A Recursive function with base cases will always finish

A Recursive function must return a value

Any for loop can be rewritten as an equivalent recursive 
function

A Recursive function without a base case will never fin-
ish

A Recursive function must have at least one base case

Binary trees can be searched recursively

Binary trees can be defined recursively
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Appendix E

Recursion Game Post-Survey

All personal information gathered is private. Other information will only be used by the

department and faculty after all personal information is removed (i.e. if information is used

it will be anonymous). This survey has no effect on your grade in this course.

General Information

Name:

Age:

Gender: Female Male

Class Rank: Freshman Sophomore Junior Senior

What type of degree? Bachelor Arts Bachelor Science Other

What is your major?
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Strongly 
Agree

Agree Neutral Disagree Strongly 
Disagree

I understand the concept of 
Recursion

I know what a Recursive 
Function is

Recursion is difficult to un-
derstand

I understand how Recursive 
Functions are called

Recursion is complex

I understand the concept of 
Base Cases

Playing the Recursive 
Breakout Game helped me 
understand Recursion

The Recursive Breakout 
Game is fun

The Recursive Breakout 
Game should be used in 
courses to teach Recursion
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Recursion Knowledge

True False Don’t Know

A Recursive function is a function which calls itself

A Recursive function cannot call other functions

A Recursive function divides a problem into simpler 
problems

A Recursive function combines the solutions of simpler 
problems into the solution of the initial problem

A Recursive function must have exactly one base case

A Base case is a subproblem with a non-recursive solu-
tion

A Recursive function cannot have more than one base 
case

A Base case is a subproblem with a recursive solution

A Recursive function with base cases will always finish

A Recursive function must return a value

Any for loop can be rewritten as an equivalent recursive 
function

A Recursive function without a base case will never fin-
ish

A Recursive function must have at least one base case

Binary trees can be searched recursively

Binary trees can be defined recursively


